Loading…
A Mechanism Displaying Autocatalysis: The Hydrogenation of Acetophenone Catalyzed by RuH(S-binap)(app) Where app Is the Amido Ligand Derived from 2-Amino-2-(2-pyridyl)propane
The 2-(aminomethyl)pyridine (ampy) ligand is known to activate ruthenium complexes for the catalytic hydrogenation of ketones. Here we prepare well-defined catalysts using the new ligand 2-amino-2-(2-pyridyl)propane (appH) in order to elucidate the role of the pyridyl group. The ligand has two methy...
Saved in:
Published in: | Organometallics 2007-11, Vol.26 (24), p.5987-5999 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The 2-(aminomethyl)pyridine (ampy) ligand is known to activate ruthenium complexes for the catalytic hydrogenation of ketones. Here we prepare well-defined catalysts using the new ligand 2-amino-2-(2-pyridyl)propane (appH) in order to elucidate the role of the pyridyl group. The ligand has two methyl groups on the α-carbon to block β-hydride elimination reactions. It reacts with RuHCl(S-binap)(PPh3) to produce the orange-yellow complex RuHCl(S-binap)(appH) (2). In the presence of a strong base (KOtBu), complex 2 is converted into an active catalyst for the H2-hydrogenation of acetophenone in benzene under mild conditions (20 °C, 5 atm H2). Solutions of 2 rapidly react with KOtBu under an argon atmosphere to produce a deep red amidohydrido complex RuH(S-binap)(app) (3), which is an active catalyst. A crystal structure determination of 3 represents the first structure of a Ru-binap hydrido-amido complex. It reveals a five-coordinate Ru(II) center with a short Ru−N(amido) distance (1.962(3) Å) and a trigonal planar geometry at the amido nitrogen. The kinetic experiments using 3 as a catalyst and acetophenone as a substrate in benzene show that the rate of 1-phenylethanol production is dependent on both catalyst and H2 concentrations. These results parallel the behavior of the conventional Noyori-type Ru(II) catalysts with diamine ligands. However, unique features of catalysis with 3 are as follows: (1) the formation of a dihydride is thermodynamically unfavorable at 1 atm H2, 20 °C; (2) the rate shows a dependence on the product concentration since it increases as the product builds up during the reaction in an autocatalytic fashion. A significant increase in the initial rate is observed when a critical concentration of rac-1-phenylethanol is present at the beginning of the reaction. The addition of 2-propanol in benzene raises the rate as well, and the fastest H2-hydrogenation is achieved if 2-propanol is used as a solvent. This “alcohol effect” is favored by the pyridyl ligand app since it was not observed for the similar catalyst RuH(NHCMe2CMe2NH2)(binap). While 3 is an exceptional catalyst for H2-hydrogenation in 2-propanol (TOF > 6700 h-1 at 20 °C, 5 atm H2), it has a lower activity in transfer hydrogenation from the same solvent under comparable conditions (TOF 110 h-1 at 20 °C, 1 atm Ar). DFT calculations on the model amido complex Ru(H)(PH3)2(HNCH2C5H4N) (4) confirm that the splitting of H2 to give the trans dihydride is the turnover-limiting step an |
---|---|
ISSN: | 0276-7333 1520-6041 |
DOI: | 10.1021/om700849w |