Loading…

THEMIS observations of extreme magnetopause motion caused by a hot flow anomaly

On 30 October 2007, the five THEMIS spacecraft observed the cause and consequence of extreme motion of the dawn flank magnetopause, displacing the magnetopause outward by at least 4.8 RE in 59 s, with flow speeds in the direction normal to the model magnetopause reaching 800 km/s. While the THEMIS A...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics 2009-08, Vol.114 (A8), p.n/a
Main Authors: Jacobsen, K. S., Phan, T. D., Eastwood, J. P., Sibeck, D. G., Moen, J. I., Angelopoulos, V., McFadden, J. P., Engebretson, M. J., Provan, G., Larson, D., Fornaçon, K.-H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:On 30 October 2007, the five THEMIS spacecraft observed the cause and consequence of extreme motion of the dawn flank magnetopause, displacing the magnetopause outward by at least 4.8 RE in 59 s, with flow speeds in the direction normal to the model magnetopause reaching 800 km/s. While the THEMIS A, C, D, and E observations allowed the determination of the velocity, size, and shape of a large bulge moving tailward along the magnetopause at a speed of 355 km/s, THEMIS B observed the signatures of a hot flow anomaly (HFA) upstream of the bow shock at the same time, indicating that the pressure perturbation generated by the HFA may be the source of the fast compression and expansion of the magnetosphere. The transient deformation of the magnetopause generated field‐aligned currents and created traveling convection vortices which were detected by ground magnetometers. This event demonstrates that kinetic (non‐MHD) effects at the bow shock can have global consequences on the magnetosphere.
ISSN:0148-0227
2156-2202
DOI:10.1029/2008JA013873