Loading…

Alpine Glacier Reveals Ecosystem Impacts of Europe's Prosperity and Peril Over the Last Millennium

Information about past ecosystem dynamics and human activities is stored in the ice of Colle Gnifetti glacier in the Swiss Alps. Adverse climatic intervals incurred crop failures and famines and triggered reestablishment of forest vegetation but also societal resilience through innovation. Historica...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2021-10, Vol.48 (20), p.n/a
Main Authors: Brugger, S. O., Schwikowski, M., Gobet, E., Schwörer, C., Rohr, C., Sigl, M., Henne, S., Pfister, C., Jenk, T. M., Henne, P. D., Tinner, W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Information about past ecosystem dynamics and human activities is stored in the ice of Colle Gnifetti glacier in the Swiss Alps. Adverse climatic intervals incurred crop failures and famines and triggered reestablishment of forest vegetation but also societal resilience through innovation. Historical documents and lake sediments record these changes at local—regional scales but often struggle to comprehensively document continental‐scale impacts on ecosystems. Here, we provide unique multiproxy evidence of broad‐scale ecosystem, land use, and climate dynamics over the past millennium from a Colle Gnifetti microfossil and oxygen isotope record. Microfossil data indicate that before 1750 CE forests and fallow land rapidly replaced crop cultivation during historically documented societal crises caused by climate shifts and epidemics. Subsequently, with technology and the introduction of more resilient crops, European societies adapted to the Little Ice Age cold period, but resource overexploitation and industrialization led to new regional to global‐scale environmental challenges. Plain Language Summary Sophisticated microscopy and geochemistry analyses of glacier ice from the Monte Rosa Massif in the Swiss Alps reveal close linkages among European climate, vegetation, agriculture, pollution, pests, and fire during the past millennium. Our novel time series shows that societal and environmental dynamics were mainly controlled by climate, pandemics, and technological innovations. By placing the glacial information into historical context, we reveal some of the mechanisms that created prosperity and peril in Europe's past. Industrialization and import of maize and other new crops enabled European societies to transcend the crop failures and famines of the Little Ice Age climate period during the 19th century, but unintended environmental consequences resulted, which are now culminating in global warming and species loss. Key Points Novel ice core microfossil data reveal large‐scale dynamics among ecosystems, land use, and climate in Europe Proxies preserved in ice cores link land‐use change to societal challenges caused by climate events and epidemics Agricultural reforms and industrialization disrupted links between climate and land use and led to current environmental challenges
ISSN:0094-8276
1944-8007
DOI:10.1029/2021GL095039