Loading…
Molecular insight and resolution for tumors harboring the H-ras(G12V) mutation
A study about the physiological regulators of oncogenic growth has recently been published in the literature. When the H-ras gene mutates, the mutant H-ras(G12V) protein causes uncontrolled cell growth. We tried to observe whether there is any difference between the wild type and mutant H-ras protei...
Saved in:
Published in: | RSC advances 2015-01, Vol.5 (27), p.2623-2633 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A study about the physiological regulators of oncogenic growth has recently been published in the literature. When the H-ras gene mutates, the mutant H-ras(G12V) protein causes uncontrolled cell growth. We tried to observe whether there is any difference between the wild type and mutant H-ras protein in terms of the molecular character and structural variation
in silico
. Our hypothesis is that the H-ras(G12V) protein, accompanied by an altered structure, might be responsible for excess signal transduction and even tumor formation. In this study, we wanted to find a potent compound that could bind to the H-ras(G12V) protein and interfere with the phosphorylation of the substrate protein. By using homology modeling, structure-based docking, candidate screening, and molecular dynamics (MD) simulations, we demonstrated that the structural and molecular character of the H-ras and H-ras(G12V) proteins were different. Abrine could bind to H-ras(G12V) and might interfere with the phosphorylation process. These results provided novel insight for the management of tumors or cancers, which harbor the H-ras(G12V) mutation.
GTP-bound H-ras(G12V) provides a convenient condition to phosphorylate the substrate protein. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/c4ra16763e |