Loading…

The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: a molecular dynamics simulation study

Antifreeze proteins (AFPs) inhibit ice growth in various organisms at subzero temperature. Recently, AFPs as a hydrate inhibitor have been a topic of intense discussion, while the detailed mechanism remains obscure. The present work aims to explore molecular insight into the adsorption and inhibitio...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2019-10, Vol.21 (39), p.21836-21846
Main Authors: Maddah, Mitra, Maddah, Mina, Peyvandi, Kiana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antifreeze proteins (AFPs) inhibit ice growth in various organisms at subzero temperature. Recently, AFPs as a hydrate inhibitor have been a topic of intense discussion, while the detailed mechanism remains obscure. The present work aims to explore molecular insight into the adsorption and inhibition of an AFP III on methane hydrate. Three polar, hydrophilic, and neutral amino acids (Asn14, Thr18, and Gln44) are mutated to elucidate the molecular mechanism of AFP III antifreeze activity. Another triple mutation is also designed to investigate the effect of the side chain. Atomistic molecular dynamics simulations provide detailed structural and dynamical aspects of protein residues and water molecules at the hydrate/water interface. Initially, it was proposed that the AFP III operates by the adsorption-inhibition mechanism on hydrates, almost similar to that of ice. The exchange of amide and hydroxyl groups by mutagenesis alters the shape of the side chain and the capability of hydrogen bonding and demonstrates that hydrogen bonds are not directly responsible for the AFP III antifreeze activity. Moreover, we deciphered that the length of the pendant group is an important factor in the entrapment of the AFP III on the hydrate cages, which is compatible with van der Waals interactions between the side chains and hydrate surface. The results suggest that this interaction is sensitive to the geometry and shape of the hydrate-binding surface (HBS) of the AFP, which implies that the interface between hydrates and the AFP is relatively rigid. Antifreeze proteins inhibit hydrate growth by hydrophobic interactions in cooperation with hydrogen bonds. Mutation of three polar amino acids (Asn14, Thr18, and Gln44) elucidates the molecular mechanism of AFP III antifreeze activity.
ISSN:1463-9076
1463-9084
DOI:10.1039/c9cp03833g