Loading…
Enzyme-instructed self-aggregation of Fe 3 O 4 nanoparticles for enhanced MRI T 2 imaging and photothermal therapy of tumors
The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles (NPs) can greatly enhance magnetic resonance imaging (MRI) T2-weighted imaging and near-infrared (NIR) absorption in experiments. In this study, an Ac-Arg-Val-Arg-Arg-Cys(StBu)-Lys-CBT probe was designed and coupled with monodisper...
Saved in:
Published in: | Nanoscale 2020-01, Vol.12 (3), p.1886-1893 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles (NPs) can greatly enhance magnetic resonance imaging (MRI) T2-weighted imaging and near-infrared (NIR) absorption in experiments. In this study, an Ac-Arg-Val-Arg-Arg-Cys(StBu)-Lys-CBT probe was designed and coupled with monodispersed carboxyl-decorated SPIO NPs to form SPIO@1NPs, which use it for intracellular self-aggregation. In vitro experiments showed that the self-aggregation of SPIO@1NPs was induced by a condensation reaction mediated by the enzyme furin in furin-overexpressing tumor cells. Moreover, the NPs in the aggregated state showed significantly higher MR r2 values and photothermal conversion efficiency than the NPs in the monodisperse state. Then, the in vivo SPIO@1NP self-aggregation in tumors can facilitate accurate MRI T2 imaging-guided photothermal therapy for effectively killing cancer cells. We believe that this basic technique, based on tumor-specific enzyme-instructed intracellular self-aggregation of NPs, could be useful for the rational synthesis of other inorganic NPs for use in the fields of tumor diagnosis and treatment. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c9nr09235h |