Loading…
A ratiometric bilirubin sensor based on a fluorescent gold nanocluster film with dual emissions
Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function. A ratiometric film sensor based on gold nanoclusters (AuNCs) was fabricated for highly sensitive determination of free bilirubin (fBR). Using bovine serum albumin (BSA) as a template, AuNCs that can emi...
Saved in:
Published in: | Analytical methods 2020-12, Vol.12 (47), p.5691-5698 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-fe001f3a1d21aa4ffa939dbcf43a5ec9a979481bdf8d4a51a2114aaaeab567e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c374t-fe001f3a1d21aa4ffa939dbcf43a5ec9a979481bdf8d4a51a2114aaaeab567e23 |
container_end_page | 5698 |
container_issue | 47 |
container_start_page | 5691 |
container_title | Analytical methods |
container_volume | 12 |
creator | Xiao, Wenxiang Zhi, Dongcan Pan, Qiaoni Liang, Yongbo Zhou, Fang Chen, Zhencheng |
description | Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function. A ratiometric film sensor based on gold nanoclusters (AuNCs) was fabricated for highly sensitive determination of free bilirubin (fBR). Using bovine serum albumin (BSA) as a template, AuNCs that can emit blue and red fluorescence were prepared by the hydrothermal method at different pH values. Two kinds of AuNCs were incorporated into a single film by the layer-by-layer assembly (LBL) technique. The obtained thin-film showed dual fluorescence peaks excited at 372 nm, corresponding to the blue (443 nm) and red (622 nm) emissions of AuNCs respectively. When fBR interacted with the film, both fluorescence peaks were quenched at different degrees. A ratiometric method for fBR detection was established based on the fluorescence intensity ratio of the two emissions. The linear calibration curve for fBR lay in the concentration range of 0.01-2.00 μmol L
−1
with a detection limit of 8.90 ± 0.34 nmol L
−1
(S/N = 3). The film sensor showed a quick and sensitive response to fBR and could detect fBR in real samples with satisfactory results.
Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function. |
doi_str_mv | 10.1039/d0ay01781g |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0AY01781G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461862554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-fe001f3a1d21aa4ffa939dbcf43a5ec9a979481bdf8d4a51a2114aaaeab567e23</originalsourceid><addsrcrecordid>eNpd0U1LxDAQBuAgit8X70rAiwirSdM2zXHxGwQvevBUpslEI2miSYv4762uruBpBuZhGN4hZI-zE86EOjUMPhiXDX9aIZtcVmqmaqlWl33NNshWzi-M1UrUfJ1sCFGwSjbNJmnnNMHgYo9Dcpp2zrs0di7QjCHHRDvIaGgMFKj1Y0yYNYaBPkVvaIAQtR_zgIla53v67oZnakbwFHuXs4sh75A1Cz7j7k_dJg-XF_dn17Pbu6ubs_ntTAtZDjOLjHErgJuCA5TWghLKdNqWAirUCpRUZcM7YxtTQsWh4LwEAISuqiUWYpscLfa-pvg2Yh7a6QKN3kPAOOa2KGve1EVVlRM9_Edf4pjCdN2kJJO8qFk1qeOF0inmnNC2r8n1kD5aztqv2NtzNn_8jv1qwgc_K8euR7OkvzlPYH8BUtbL6d_fxCehU4iI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470712605</pqid></control><display><type>article</type><title>A ratiometric bilirubin sensor based on a fluorescent gold nanocluster film with dual emissions</title><source>Royal Society of Chemistry</source><creator>Xiao, Wenxiang ; Zhi, Dongcan ; Pan, Qiaoni ; Liang, Yongbo ; Zhou, Fang ; Chen, Zhencheng</creator><creatorcontrib>Xiao, Wenxiang ; Zhi, Dongcan ; Pan, Qiaoni ; Liang, Yongbo ; Zhou, Fang ; Chen, Zhencheng</creatorcontrib><description>Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function. A ratiometric film sensor based on gold nanoclusters (AuNCs) was fabricated for highly sensitive determination of free bilirubin (fBR). Using bovine serum albumin (BSA) as a template, AuNCs that can emit blue and red fluorescence were prepared by the hydrothermal method at different pH values. Two kinds of AuNCs were incorporated into a single film by the layer-by-layer assembly (LBL) technique. The obtained thin-film showed dual fluorescence peaks excited at 372 nm, corresponding to the blue (443 nm) and red (622 nm) emissions of AuNCs respectively. When fBR interacted with the film, both fluorescence peaks were quenched at different degrees. A ratiometric method for fBR detection was established based on the fluorescence intensity ratio of the two emissions. The linear calibration curve for fBR lay in the concentration range of 0.01-2.00 μmol L
−1
with a detection limit of 8.90 ± 0.34 nmol L
−1
(S/N = 3). The film sensor showed a quick and sensitive response to fBR and could detect fBR in real samples with satisfactory results.
Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function.</description><identifier>ISSN: 1759-9660</identifier><identifier>EISSN: 1759-9679</identifier><identifier>DOI: 10.1039/d0ay01781g</identifier><identifier>PMID: 33205788</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bilirubin ; Biomarkers ; Bovine serum albumin ; Calibration ; Emissions ; Fluorescence ; Gold ; Hemoglobin ; Metabolism ; Metal Nanoparticles ; Nanoclusters ; Sensors ; Serum albumin ; Serum Albumin, Bovine ; Spectrometry, Fluorescence ; Thin films</subject><ispartof>Analytical methods, 2020-12, Vol.12 (47), p.5691-5698</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-fe001f3a1d21aa4ffa939dbcf43a5ec9a979481bdf8d4a51a2114aaaeab567e23</citedby><cites>FETCH-LOGICAL-c374t-fe001f3a1d21aa4ffa939dbcf43a5ec9a979481bdf8d4a51a2114aaaeab567e23</cites><orcidid>0000-0003-4773-7934 ; 0000-0002-8544-2291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33205788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Wenxiang</creatorcontrib><creatorcontrib>Zhi, Dongcan</creatorcontrib><creatorcontrib>Pan, Qiaoni</creatorcontrib><creatorcontrib>Liang, Yongbo</creatorcontrib><creatorcontrib>Zhou, Fang</creatorcontrib><creatorcontrib>Chen, Zhencheng</creatorcontrib><title>A ratiometric bilirubin sensor based on a fluorescent gold nanocluster film with dual emissions</title><title>Analytical methods</title><addtitle>Anal Methods</addtitle><description>Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function. A ratiometric film sensor based on gold nanoclusters (AuNCs) was fabricated for highly sensitive determination of free bilirubin (fBR). Using bovine serum albumin (BSA) as a template, AuNCs that can emit blue and red fluorescence were prepared by the hydrothermal method at different pH values. Two kinds of AuNCs were incorporated into a single film by the layer-by-layer assembly (LBL) technique. The obtained thin-film showed dual fluorescence peaks excited at 372 nm, corresponding to the blue (443 nm) and red (622 nm) emissions of AuNCs respectively. When fBR interacted with the film, both fluorescence peaks were quenched at different degrees. A ratiometric method for fBR detection was established based on the fluorescence intensity ratio of the two emissions. The linear calibration curve for fBR lay in the concentration range of 0.01-2.00 μmol L
−1
with a detection limit of 8.90 ± 0.34 nmol L
−1
(S/N = 3). The film sensor showed a quick and sensitive response to fBR and could detect fBR in real samples with satisfactory results.
Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function.</description><subject>Bilirubin</subject><subject>Biomarkers</subject><subject>Bovine serum albumin</subject><subject>Calibration</subject><subject>Emissions</subject><subject>Fluorescence</subject><subject>Gold</subject><subject>Hemoglobin</subject><subject>Metabolism</subject><subject>Metal Nanoparticles</subject><subject>Nanoclusters</subject><subject>Sensors</subject><subject>Serum albumin</subject><subject>Serum Albumin, Bovine</subject><subject>Spectrometry, Fluorescence</subject><subject>Thin films</subject><issn>1759-9660</issn><issn>1759-9679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LxDAQBuAgit8X70rAiwirSdM2zXHxGwQvevBUpslEI2miSYv4762uruBpBuZhGN4hZI-zE86EOjUMPhiXDX9aIZtcVmqmaqlWl33NNshWzi-M1UrUfJ1sCFGwSjbNJmnnNMHgYo9Dcpp2zrs0di7QjCHHRDvIaGgMFKj1Y0yYNYaBPkVvaIAQtR_zgIla53v67oZnakbwFHuXs4sh75A1Cz7j7k_dJg-XF_dn17Pbu6ubs_ntTAtZDjOLjHErgJuCA5TWghLKdNqWAirUCpRUZcM7YxtTQsWh4LwEAISuqiUWYpscLfa-pvg2Yh7a6QKN3kPAOOa2KGve1EVVlRM9_Edf4pjCdN2kJJO8qFk1qeOF0inmnNC2r8n1kD5aztqv2NtzNn_8jv1qwgc_K8euR7OkvzlPYH8BUtbL6d_fxCehU4iI</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Xiao, Wenxiang</creator><creator>Zhi, Dongcan</creator><creator>Pan, Qiaoni</creator><creator>Liang, Yongbo</creator><creator>Zhou, Fang</creator><creator>Chen, Zhencheng</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4773-7934</orcidid><orcidid>https://orcid.org/0000-0002-8544-2291</orcidid></search><sort><creationdate>20201221</creationdate><title>A ratiometric bilirubin sensor based on a fluorescent gold nanocluster film with dual emissions</title><author>Xiao, Wenxiang ; Zhi, Dongcan ; Pan, Qiaoni ; Liang, Yongbo ; Zhou, Fang ; Chen, Zhencheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-fe001f3a1d21aa4ffa939dbcf43a5ec9a979481bdf8d4a51a2114aaaeab567e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bilirubin</topic><topic>Biomarkers</topic><topic>Bovine serum albumin</topic><topic>Calibration</topic><topic>Emissions</topic><topic>Fluorescence</topic><topic>Gold</topic><topic>Hemoglobin</topic><topic>Metabolism</topic><topic>Metal Nanoparticles</topic><topic>Nanoclusters</topic><topic>Sensors</topic><topic>Serum albumin</topic><topic>Serum Albumin, Bovine</topic><topic>Spectrometry, Fluorescence</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Wenxiang</creatorcontrib><creatorcontrib>Zhi, Dongcan</creatorcontrib><creatorcontrib>Pan, Qiaoni</creatorcontrib><creatorcontrib>Liang, Yongbo</creatorcontrib><creatorcontrib>Zhou, Fang</creatorcontrib><creatorcontrib>Chen, Zhencheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Wenxiang</au><au>Zhi, Dongcan</au><au>Pan, Qiaoni</au><au>Liang, Yongbo</au><au>Zhou, Fang</au><au>Chen, Zhencheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A ratiometric bilirubin sensor based on a fluorescent gold nanocluster film with dual emissions</atitle><jtitle>Analytical methods</jtitle><addtitle>Anal Methods</addtitle><date>2020-12-21</date><risdate>2020</risdate><volume>12</volume><issue>47</issue><spage>5691</spage><epage>5698</epage><pages>5691-5698</pages><issn>1759-9660</issn><eissn>1759-9679</eissn><abstract>Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function. A ratiometric film sensor based on gold nanoclusters (AuNCs) was fabricated for highly sensitive determination of free bilirubin (fBR). Using bovine serum albumin (BSA) as a template, AuNCs that can emit blue and red fluorescence were prepared by the hydrothermal method at different pH values. Two kinds of AuNCs were incorporated into a single film by the layer-by-layer assembly (LBL) technique. The obtained thin-film showed dual fluorescence peaks excited at 372 nm, corresponding to the blue (443 nm) and red (622 nm) emissions of AuNCs respectively. When fBR interacted with the film, both fluorescence peaks were quenched at different degrees. A ratiometric method for fBR detection was established based on the fluorescence intensity ratio of the two emissions. The linear calibration curve for fBR lay in the concentration range of 0.01-2.00 μmol L
−1
with a detection limit of 8.90 ± 0.34 nmol L
−1
(S/N = 3). The film sensor showed a quick and sensitive response to fBR and could detect fBR in real samples with satisfactory results.
Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33205788</pmid><doi>10.1039/d0ay01781g</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4773-7934</orcidid><orcidid>https://orcid.org/0000-0002-8544-2291</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-9660 |
ispartof | Analytical methods, 2020-12, Vol.12 (47), p.5691-5698 |
issn | 1759-9660 1759-9679 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0AY01781G |
source | Royal Society of Chemistry |
subjects | Bilirubin Biomarkers Bovine serum albumin Calibration Emissions Fluorescence Gold Hemoglobin Metabolism Metal Nanoparticles Nanoclusters Sensors Serum albumin Serum Albumin, Bovine Spectrometry, Fluorescence Thin films |
title | A ratiometric bilirubin sensor based on a fluorescent gold nanocluster film with dual emissions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20ratiometric%20bilirubin%20sensor%20based%20on%20a%20fluorescent%20gold%20nanocluster%20film%20with%20dual%20emissions&rft.jtitle=Analytical%20methods&rft.au=Xiao,%20Wenxiang&rft.date=2020-12-21&rft.volume=12&rft.issue=47&rft.spage=5691&rft.epage=5698&rft.pages=5691-5698&rft.issn=1759-9660&rft.eissn=1759-9679&rft_id=info:doi/10.1039/d0ay01781g&rft_dat=%3Cproquest_cross%3E2461862554%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-fe001f3a1d21aa4ffa939dbcf43a5ec9a979481bdf8d4a51a2114aaaeab567e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470712605&rft_id=info:pmid/33205788&rfr_iscdi=true |