Loading…
Quantum transport along the armchair and zigzag edges of β 12 -borophene nanoribbons in the presence of a Zeeman magnetic field and dilute charged impurities
Tuning the physical properties of nanoribbons is increasing for real applications. We here focus on magnetic and electronic effects to contribute to this matter. We particularly investigate the effects of a Zeeman magnetic field and dilute charged impurities on the quantum transport properties of β...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2021-12, Vol.23 (46), p.26285-26295 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tuning the physical properties of nanoribbons is increasing for real applications. We here focus on magnetic and electronic effects to contribute to this matter. We particularly investigate the effects of a Zeeman magnetic field and dilute charged impurities on the quantum transport properties of β
12
-borophene nanoribbons (BNRs), both in the armchair and zigzag directions, by considering substrate effects. Calculations are done using the five-band tight-binding Hamiltonian, the Green's function approach (for density of states), the Landauer–Büttiker formalism (for quantum transport quantities), and the self-consistent Born approximation (for impurity effects). Our findings show that both electronic transmission probability and current–voltage characteristics of the system can be significantly adjusted in the presence of Zeeman splitting and charged dilute impuritiesy. Interestingly, the Zeeman splitting effect leads to an enhancement of the current that flows through the channel, whereas a reduction is observed in the electrical current of charged impurity-imbrued β
12
-BNR. Moreover, through a detailed analysis of armchair and zigzag directions, we found that the transport characteristics of impurity-induced armchair β
12
-BNRs are much more strongly tuned than those of zigzag ones. These results provide useful information for logic nanoelectronics. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/D1CP03798F |