Loading…
NIR-absorbing Prussian blue nanoparticles for transarterial infusion photothermal therapy of VX2 tumors implanted in rabbits
Nanomaterial-related photothermal therapy has been intensively investigated for treatment of hepatocellular carcinoma (HCC). However, owing to the low specificity to tumors and easy excretion from the systemic circulation, the low dose of photoactive nanomaterials in solid tumors severely hinders th...
Saved in:
Published in: | Nanoscale 2021-05, Vol.13 (18), p.849-8497 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanomaterial-related photothermal therapy has been intensively investigated for treatment of hepatocellular carcinoma (HCC). However, owing to the low specificity to tumors and easy excretion from the systemic circulation, the low dose of photoactive nanomaterials in solid tumors severely hinders the photothermal therapy applications for HCC. Herein, an innovative strategy for transarterial infusion photothermal therapy (TAIPPT) of VX2 tumors implanted in rabbits is reported. NIR-absorbing Prussian blue nanoparticles were prepared by microemulsion methods, which demonstrate excellent photothermal therapy capacity and satisfactory biocompatibility. Prussian blue nanoparticles are transarterially infused into VX2 tumors and irradiated for photothermal therapy. TAIPPT achieves fast and efficient delivery of nanoparticles into tumors and complete ablation by one-time transarterial infusion treatment. Furthermore, TAIPPT could activate the immune cells in rabbits and inhibit distant tumors. Our findings describe a promising strategy for tumor eradication and may benefit future clinical HCC patients.
An innovative strategy to transarterial infusion photothermal therapy (TAIPPT) of VX2 tumor implanted in rabbit is reported. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/d1nr01394g |