Loading…
Thermal stability and pathways for the oxidation of four 3-phenyl-2-propene compounds
Cinnamaldehyde, cinnamyl alcohol, β-methylstyrene and cinnamic acid are four important biomass 3-phenyl-2-propene compounds. In the field of perfume and organic synthesis, their thermal stability and oxidation pathways deserve attention. This paper reports a new attempt to investigate the thermal st...
Saved in:
Published in: | RSC advances 2021-10, Vol.11 (52), p.32654-3267 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cinnamaldehyde, cinnamyl alcohol, β-methylstyrene and cinnamic acid are four important biomass 3-phenyl-2-propene compounds. In the field of perfume and organic synthesis, their thermal stability and oxidation pathways deserve attention. This paper reports a new attempt to investigate the thermal stability and reactivity by a custom-designed mini closed pressure vessel test (MCPVT). The pressure and temperature behaviors were measured by MCPVT under nitrogen and oxygen atmosphere. The temperature of initial oxygen absorption (
T
a
) and rapid oxidation (
T
R
) were calculated. The results showed that four 3-phenyl-2-propene compounds were stable under nitrogen atmosphere. The
T
a
of cinnamaldehyde, cinnamyl alcohol, β-methylstyrene, and cinnamic acid was 271.25 K, 292.375 K, 323.125 K, and 363.875 K, and their
T
R
was 301.125 K, 332.75 K, 357.91 K, and 385.375 K, respectively. The oxidation reactivity order was derived to be cinnamaldehyde > cinnamyl alcohol > β-methylstyrene > cinnamic acid. The oxidation kinetics were determined using
n versus
time (
n
-
t
) plots, which showed a second-order reaction. Peroxide was determined by iodimetry, and the oxidation products were analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that the peroxide value of cinnamaldehyde, cinnamyl alcohol, β-methylstyrene, and cinnamic acid reached 18.88, 15.07, 9.62, and 4.24 mmol kg
−1
at 373 K for 6 h, respectively. The common oxidation products of four 3-phenyl-2-propene compounds were benzaldehyde, benzoic acid, and epoxide, which resulted from the carbon-carbon double bond oxidation. The substituents' oxidation products were obtained from the oxidation of cinnamaldehyde, cinnamyl alcohol, and β-methylstyrene. In particular, the difference is that no oxidation products of the carboxyl group of cinnamic acid were detected. The common oxidation products of the four 3-phenyl-2-propene compounds were benzaldehyde, benzoic acid, and epoxide, which resulted from the carbon-carbon double bond oxidation. The substituents' oxidation products were caught in the oxidation of cinnamaldehyde, cinnamyl alcohol, and β-methylstyrene. In particular, the difference is that no oxidation products of the carboxyl group of cinnamic acid were detected. According to the complex oxidation products, important insights into the oxidation pathways were provided.
A new attempt to investigate the thermal stability and reactivity of four 3-phenyl-2-propene compounds with oxygen b |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/d1ra04836h |