Loading…

A flap endonuclease 1-assisted universal viral nucleic acid sensing system using surface-enhanced Raman scattering

The continued uncertainty of emerging infectious viral diseases has led to an extraordinary urgency to develop advanced molecular diagnostic tests that are faster, more reliable, simpler to use, and readily available than traditional methods. This study presents a system that can accurately and rapi...

Full description

Saved in:
Bibliographic Details
Published in:Analyst (London) 2022-11, Vol.147 (22), p.528-537
Main Authors: Park, Joowon, Kim, Jinyoung, Park, Chaewon, Lim, Jong-Woo, Yeom, Minjoo, Song, Daesub, Kim, Eunjung, Haam, Seungjoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The continued uncertainty of emerging infectious viral diseases has led to an extraordinary urgency to develop advanced molecular diagnostic tests that are faster, more reliable, simpler to use, and readily available than traditional methods. This study presents a system that can accurately and rapidly trace viral nucleic acids by employing flap endonuclease 1 (FEN1)-assisted specific DNA cleavage reactions and surface-enhanced Raman scattering (SERS)-based analysis. The designed Raman tag-labeled 5′- and 3′-flap provider DNA yielded structurally defined DNA substrates on magnetic nanoparticle surfaces when a target was present. The FEN1 enzyme subsequently processes the substrates formed via an invasive cleavage reaction, producing 5′-flap DNA products. Magnetic separation allows efficient purification of flap products from reaction mixtures. The isolated solution was directly applied onto high aspect-ratio plasmonic silver nanopillars serving as SERS-active substrates to induce amplified SERS signals. We verified the developed SERS-based sensing system using a synthetic target complementary to an avian influenza A (H9N2) virus gene and examined the detection performance of the system using complementary DNA (cDNA) derived from H9N2 viral RNA. As a result, we could detect a synthetic target with a detection limit of 41.1 fM with a single base-pair discrimination ability and achieved multiplexed detection capability for two targets. Using cDNA samples from H9N2 viruses, we observed a high concordance of R 2 = 0.917 between the data obtained from SERS and the quantitative polymerase chain reaction. We anticipate that this enzyme-assisted SERS sensor may provide insights into the development of high-performance molecular diagnostic tools that can respond rapidly to viral pathogens. Flap endonuclease 1 recognizes a specific DNA structure and cleaves Raman tag-labeled probe molecules in a target-specific manner. With SERS-based sensing, the developed detection approach produces sensitive, quantitative, and multiplexable signals.
ISSN:0003-2654
1364-5528
DOI:10.1039/d2an01123a