Loading…
A mitochondria-targeting self-assembled carrier-free lonidamine nanodrug for redox-activated drug release to enhance cancer chemotherapy
Mitochondria play a vital role in maintaining cellular homeostasis. In recent years, studies have found that mitochondria have an important role in the occurrence and development of tumors, and targeting mitochondria has become a new strategy for tumor treatment. Lonidamine (LND), as a hexokinase in...
Saved in:
Published in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-05, Vol.11 (17), p.3951-3957 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mitochondria play a vital role in maintaining cellular homeostasis. In recent years, studies have found that mitochondria have an important role in the occurrence and development of tumors, and targeting mitochondria has become a new strategy for tumor treatment. Lonidamine (LND), as a hexokinase inhibitor, can block the energy supply and destroy mitochondria. However, poor water solubility and low mitochondrial selectivity limit its clinical application. To overcome these obstacles, we report redox-activated self-assembled carrier-free nanoparticles (Cy-TK-LND NPs) based on a small molecule prodrug, in which photosensitizer IR780 (Cy) which targets mitochondria is conjugated to LND
via
a sensitive thioketal (TK) linker. Intracellular oxidative stress induced by laser radiation leads to the responsive cleavage of Cy-TK-LND NPs, facilitating the release of free LND into mitochondria. Subsequently, LND damages mitochondria, triggering the apoptosis pathway. The results show the effective killing effect of Cy-TK-LND NPs on cancer cells
in vitro
and
in vivo
. The IC
50
value of irradiated Cy-TK-LND NPs is 5-fold lower than that of free LND. Moreover, tumor tissue section staining results demonstrate that irradiated Cy-TK-LND NPs induce necrosis and apoptosis of tumor cells, upregulate cytochrome
C
and pro-apoptotic Bax, and downregulate anti-apoptotic Bcl-2. Generally, Cy-TK-LND NPs exhibit efficient mitochondria-targeted delivery to improve the medicinal availability of LND. Accordingly, such a carrier-free prodrug-based nanomedicine holds promise as an effective cancer chemotherapy strategy.
Self-assembled carrier-free nanoparticles based on a prodrug enhance tumor chemotherapy through mitochondrial targeting, redox-activated drug release, and apoptotic pathway activation. |
---|---|
ISSN: | 2050-750X 2050-7518 |
DOI: | 10.1039/d2tb02728c |