Loading…

Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons

Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica....

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2023-10, Vol.15 (38), p.15665-15674
Main Authors: Pattnaik, D. P, Andrews, C, Cropper, M. D, Gabbitas, A, Balanov, A. G, Savel'ev, S, Borisov, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783
cites cdi_FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783
container_end_page 15674
container_issue 38
container_start_page 15665
container_title Nanoscale
container_volume 15
creator Pattnaik, D. P
Andrews, C
Cropper, M. D
Gabbitas, A
Balanov, A. G
Savel'ev, S
Borisov, P
description Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica. Our experimental findings show that after exposure to radiation, the memristors and artificial neurons made of them demonstrate much better performance in terms of stable volatile resistive switching and higher spiking frequencies, respectively, compared to the pristine samples. At the same time we observe partial oxidation of silver and reduction of silicon within the switching silica layer. We propose nanoinclusions of reduced silicon distributed across the silica layer to be the backbone for metallic nanoparticles to form conductive filaments, as supported by our theoretical simulations of radiation-induced changes in the diffusion process. Our findings propose a new opportunity to engineer the required characteristics of diffusive memristors in order to emulate biological neurons and develop bio-inspired computational technology. Gamma photons were used to break Si-O bonds in silicon oxide-based volatile memristor devices. The corresponding radiation-induced nanodefects were shown to significantly improve the resistive switching performance.
doi_str_mv 10.1039/d3nr01853a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3NR01853A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872686200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783</originalsourceid><addsrcrecordid>eNpd0EFLwzAUwPEgCs7pxbsQ8CJCNc1rk_Q4pk5hKAw9lyx5gYw2nUkr-O2tTiZ4eu_w4_H4E3Kes5ucQXVrIUSWqxL0AZlwVrAMQPLD_S6KY3KS0oYxUYGACVktdNtqGrX1uvddyHywg0FLgw6dRYemT9QHar1zQ_IfSFtso099FxPVwVIde--88bqhAYfYhXRKjpxuEp79zil5e7h_nT9my5fF03y2zAyUrM8qm-fOgYVSqLUrrcPCAluvZemUKCowloHjClG6smA5WEReVpUstHKKSQVTcrW7u43d-4Cpr1ufDDaNDtgNqeZKCJASeDHSy3900w0xjN-NSnKhBGdsVNc7ZWKXUkRXb6Nvdfysc1Z_563v4Hn1k3c24osdjsns3V9--ALXTnc3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872686200</pqid></control><display><type>article</type><title>Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Pattnaik, D. P ; Andrews, C ; Cropper, M. D ; Gabbitas, A ; Balanov, A. G ; Savel'ev, S ; Borisov, P</creator><creatorcontrib>Pattnaik, D. P ; Andrews, C ; Cropper, M. D ; Gabbitas, A ; Balanov, A. G ; Savel'ev, S ; Borisov, P</creatorcontrib><description>Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica. Our experimental findings show that after exposure to radiation, the memristors and artificial neurons made of them demonstrate much better performance in terms of stable volatile resistive switching and higher spiking frequencies, respectively, compared to the pristine samples. At the same time we observe partial oxidation of silver and reduction of silicon within the switching silica layer. We propose nanoinclusions of reduced silicon distributed across the silica layer to be the backbone for metallic nanoparticles to form conductive filaments, as supported by our theoretical simulations of radiation-induced changes in the diffusion process. Our findings propose a new opportunity to engineer the required characteristics of diffusive memristors in order to emulate biological neurons and develop bio-inspired computational technology. Gamma photons were used to break Si-O bonds in silicon oxide-based volatile memristor devices. The corresponding radiation-induced nanodefects were shown to significantly improve the resistive switching performance.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr01853a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Filaments ; Gamma rays ; Memristors ; Nanoparticles ; Neurons ; Oxidation ; Radiation ; Radiation effects ; Silicon dioxide ; Silver ; Switching</subject><ispartof>Nanoscale, 2023-10, Vol.15 (38), p.15665-15674</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783</citedby><cites>FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783</cites><orcidid>0000-0002-1678-0756 ; 0000-0003-2771-230X ; 0000-0003-1464-6999 ; 0009-0008-9262-174X ; 0009-0003-8393-131X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pattnaik, D. P</creatorcontrib><creatorcontrib>Andrews, C</creatorcontrib><creatorcontrib>Cropper, M. D</creatorcontrib><creatorcontrib>Gabbitas, A</creatorcontrib><creatorcontrib>Balanov, A. G</creatorcontrib><creatorcontrib>Savel'ev, S</creatorcontrib><creatorcontrib>Borisov, P</creatorcontrib><title>Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons</title><title>Nanoscale</title><description>Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica. Our experimental findings show that after exposure to radiation, the memristors and artificial neurons made of them demonstrate much better performance in terms of stable volatile resistive switching and higher spiking frequencies, respectively, compared to the pristine samples. At the same time we observe partial oxidation of silver and reduction of silicon within the switching silica layer. We propose nanoinclusions of reduced silicon distributed across the silica layer to be the backbone for metallic nanoparticles to form conductive filaments, as supported by our theoretical simulations of radiation-induced changes in the diffusion process. Our findings propose a new opportunity to engineer the required characteristics of diffusive memristors in order to emulate biological neurons and develop bio-inspired computational technology. Gamma photons were used to break Si-O bonds in silicon oxide-based volatile memristor devices. The corresponding radiation-induced nanodefects were shown to significantly improve the resistive switching performance.</description><subject>Filaments</subject><subject>Gamma rays</subject><subject>Memristors</subject><subject>Nanoparticles</subject><subject>Neurons</subject><subject>Oxidation</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Silicon dioxide</subject><subject>Silver</subject><subject>Switching</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0EFLwzAUwPEgCs7pxbsQ8CJCNc1rk_Q4pk5hKAw9lyx5gYw2nUkr-O2tTiZ4eu_w4_H4E3Kes5ucQXVrIUSWqxL0AZlwVrAMQPLD_S6KY3KS0oYxUYGACVktdNtqGrX1uvddyHywg0FLgw6dRYemT9QHar1zQ_IfSFtso099FxPVwVIde--88bqhAYfYhXRKjpxuEp79zil5e7h_nT9my5fF03y2zAyUrM8qm-fOgYVSqLUrrcPCAluvZemUKCowloHjClG6smA5WEReVpUstHKKSQVTcrW7u43d-4Cpr1ufDDaNDtgNqeZKCJASeDHSy3900w0xjN-NSnKhBGdsVNc7ZWKXUkRXb6Nvdfysc1Z_563v4Hn1k3c24osdjsns3V9--ALXTnc3</recordid><startdate>20231005</startdate><enddate>20231005</enddate><creator>Pattnaik, D. P</creator><creator>Andrews, C</creator><creator>Cropper, M. D</creator><creator>Gabbitas, A</creator><creator>Balanov, A. G</creator><creator>Savel'ev, S</creator><creator>Borisov, P</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1678-0756</orcidid><orcidid>https://orcid.org/0000-0003-2771-230X</orcidid><orcidid>https://orcid.org/0000-0003-1464-6999</orcidid><orcidid>https://orcid.org/0009-0008-9262-174X</orcidid><orcidid>https://orcid.org/0009-0003-8393-131X</orcidid></search><sort><creationdate>20231005</creationdate><title>Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons</title><author>Pattnaik, D. P ; Andrews, C ; Cropper, M. D ; Gabbitas, A ; Balanov, A. G ; Savel'ev, S ; Borisov, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Filaments</topic><topic>Gamma rays</topic><topic>Memristors</topic><topic>Nanoparticles</topic><topic>Neurons</topic><topic>Oxidation</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Silicon dioxide</topic><topic>Silver</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pattnaik, D. P</creatorcontrib><creatorcontrib>Andrews, C</creatorcontrib><creatorcontrib>Cropper, M. D</creatorcontrib><creatorcontrib>Gabbitas, A</creatorcontrib><creatorcontrib>Balanov, A. G</creatorcontrib><creatorcontrib>Savel'ev, S</creatorcontrib><creatorcontrib>Borisov, P</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pattnaik, D. P</au><au>Andrews, C</au><au>Cropper, M. D</au><au>Gabbitas, A</au><au>Balanov, A. G</au><au>Savel'ev, S</au><au>Borisov, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons</atitle><jtitle>Nanoscale</jtitle><date>2023-10-05</date><risdate>2023</risdate><volume>15</volume><issue>38</issue><spage>15665</spage><epage>15674</epage><pages>15665-15674</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica. Our experimental findings show that after exposure to radiation, the memristors and artificial neurons made of them demonstrate much better performance in terms of stable volatile resistive switching and higher spiking frequencies, respectively, compared to the pristine samples. At the same time we observe partial oxidation of silver and reduction of silicon within the switching silica layer. We propose nanoinclusions of reduced silicon distributed across the silica layer to be the backbone for metallic nanoparticles to form conductive filaments, as supported by our theoretical simulations of radiation-induced changes in the diffusion process. Our findings propose a new opportunity to engineer the required characteristics of diffusive memristors in order to emulate biological neurons and develop bio-inspired computational technology. Gamma photons were used to break Si-O bonds in silicon oxide-based volatile memristor devices. The corresponding radiation-induced nanodefects were shown to significantly improve the resistive switching performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr01853a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1678-0756</orcidid><orcidid>https://orcid.org/0000-0003-2771-230X</orcidid><orcidid>https://orcid.org/0000-0003-1464-6999</orcidid><orcidid>https://orcid.org/0009-0008-9262-174X</orcidid><orcidid>https://orcid.org/0009-0003-8393-131X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-10, Vol.15 (38), p.15665-15674
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_D3NR01853A
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Filaments
Gamma rays
Memristors
Nanoparticles
Neurons
Oxidation
Radiation
Radiation effects
Silicon dioxide
Silver
Switching
title Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gamma%20radiation-induced%20nanodefects%20in%20diffusive%20memristors%20and%20artificial%20neurons&rft.jtitle=Nanoscale&rft.au=Pattnaik,%20D.%20P&rft.date=2023-10-05&rft.volume=15&rft.issue=38&rft.spage=15665&rft.epage=15674&rft.pages=15665-15674&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr01853a&rft_dat=%3Cproquest_cross%3E2872686200%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872686200&rft_id=info:pmid/&rfr_iscdi=true