Loading…
Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons
Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica....
Saved in:
Published in: | Nanoscale 2023-10, Vol.15 (38), p.15665-15674 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783 |
container_end_page | 15674 |
container_issue | 38 |
container_start_page | 15665 |
container_title | Nanoscale |
container_volume | 15 |
creator | Pattnaik, D. P Andrews, C Cropper, M. D Gabbitas, A Balanov, A. G Savel'ev, S Borisov, P |
description | Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica. Our experimental findings show that after exposure to radiation, the memristors and artificial neurons made of them demonstrate much better performance in terms of stable volatile resistive switching and higher spiking frequencies, respectively, compared to the pristine samples. At the same time we observe partial oxidation of silver and reduction of silicon within the switching silica layer. We propose nanoinclusions of reduced silicon distributed across the silica layer to be the backbone for metallic nanoparticles to form conductive filaments, as supported by our theoretical simulations of radiation-induced changes in the diffusion process. Our findings propose a new opportunity to engineer the required characteristics of diffusive memristors in order to emulate biological neurons and develop bio-inspired computational technology.
Gamma photons were used to break Si-O bonds in silicon oxide-based volatile memristor devices. The corresponding radiation-induced nanodefects were shown to significantly improve the resistive switching performance. |
doi_str_mv | 10.1039/d3nr01853a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3NR01853A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872686200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783</originalsourceid><addsrcrecordid>eNpd0EFLwzAUwPEgCs7pxbsQ8CJCNc1rk_Q4pk5hKAw9lyx5gYw2nUkr-O2tTiZ4eu_w4_H4E3Kes5ucQXVrIUSWqxL0AZlwVrAMQPLD_S6KY3KS0oYxUYGACVktdNtqGrX1uvddyHywg0FLgw6dRYemT9QHar1zQ_IfSFtso099FxPVwVIde--88bqhAYfYhXRKjpxuEp79zil5e7h_nT9my5fF03y2zAyUrM8qm-fOgYVSqLUrrcPCAluvZemUKCowloHjClG6smA5WEReVpUstHKKSQVTcrW7u43d-4Cpr1ufDDaNDtgNqeZKCJASeDHSy3900w0xjN-NSnKhBGdsVNc7ZWKXUkRXb6Nvdfysc1Z_563v4Hn1k3c24osdjsns3V9--ALXTnc3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872686200</pqid></control><display><type>article</type><title>Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Pattnaik, D. P ; Andrews, C ; Cropper, M. D ; Gabbitas, A ; Balanov, A. G ; Savel'ev, S ; Borisov, P</creator><creatorcontrib>Pattnaik, D. P ; Andrews, C ; Cropper, M. D ; Gabbitas, A ; Balanov, A. G ; Savel'ev, S ; Borisov, P</creatorcontrib><description>Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica. Our experimental findings show that after exposure to radiation, the memristors and artificial neurons made of them demonstrate much better performance in terms of stable volatile resistive switching and higher spiking frequencies, respectively, compared to the pristine samples. At the same time we observe partial oxidation of silver and reduction of silicon within the switching silica layer. We propose nanoinclusions of reduced silicon distributed across the silica layer to be the backbone for metallic nanoparticles to form conductive filaments, as supported by our theoretical simulations of radiation-induced changes in the diffusion process. Our findings propose a new opportunity to engineer the required characteristics of diffusive memristors in order to emulate biological neurons and develop bio-inspired computational technology.
Gamma photons were used to break Si-O bonds in silicon oxide-based volatile memristor devices. The corresponding radiation-induced nanodefects were shown to significantly improve the resistive switching performance.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr01853a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Filaments ; Gamma rays ; Memristors ; Nanoparticles ; Neurons ; Oxidation ; Radiation ; Radiation effects ; Silicon dioxide ; Silver ; Switching</subject><ispartof>Nanoscale, 2023-10, Vol.15 (38), p.15665-15674</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783</citedby><cites>FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783</cites><orcidid>0000-0002-1678-0756 ; 0000-0003-2771-230X ; 0000-0003-1464-6999 ; 0009-0008-9262-174X ; 0009-0003-8393-131X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pattnaik, D. P</creatorcontrib><creatorcontrib>Andrews, C</creatorcontrib><creatorcontrib>Cropper, M. D</creatorcontrib><creatorcontrib>Gabbitas, A</creatorcontrib><creatorcontrib>Balanov, A. G</creatorcontrib><creatorcontrib>Savel'ev, S</creatorcontrib><creatorcontrib>Borisov, P</creatorcontrib><title>Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons</title><title>Nanoscale</title><description>Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica. Our experimental findings show that after exposure to radiation, the memristors and artificial neurons made of them demonstrate much better performance in terms of stable volatile resistive switching and higher spiking frequencies, respectively, compared to the pristine samples. At the same time we observe partial oxidation of silver and reduction of silicon within the switching silica layer. We propose nanoinclusions of reduced silicon distributed across the silica layer to be the backbone for metallic nanoparticles to form conductive filaments, as supported by our theoretical simulations of radiation-induced changes in the diffusion process. Our findings propose a new opportunity to engineer the required characteristics of diffusive memristors in order to emulate biological neurons and develop bio-inspired computational technology.
Gamma photons were used to break Si-O bonds in silicon oxide-based volatile memristor devices. The corresponding radiation-induced nanodefects were shown to significantly improve the resistive switching performance.</description><subject>Filaments</subject><subject>Gamma rays</subject><subject>Memristors</subject><subject>Nanoparticles</subject><subject>Neurons</subject><subject>Oxidation</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Silicon dioxide</subject><subject>Silver</subject><subject>Switching</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0EFLwzAUwPEgCs7pxbsQ8CJCNc1rk_Q4pk5hKAw9lyx5gYw2nUkr-O2tTiZ4eu_w4_H4E3Kes5ucQXVrIUSWqxL0AZlwVrAMQPLD_S6KY3KS0oYxUYGACVktdNtqGrX1uvddyHywg0FLgw6dRYemT9QHar1zQ_IfSFtso099FxPVwVIde--88bqhAYfYhXRKjpxuEp79zil5e7h_nT9my5fF03y2zAyUrM8qm-fOgYVSqLUrrcPCAluvZemUKCowloHjClG6smA5WEReVpUstHKKSQVTcrW7u43d-4Cpr1ufDDaNDtgNqeZKCJASeDHSy3900w0xjN-NSnKhBGdsVNc7ZWKXUkRXb6Nvdfysc1Z_563v4Hn1k3c24osdjsns3V9--ALXTnc3</recordid><startdate>20231005</startdate><enddate>20231005</enddate><creator>Pattnaik, D. P</creator><creator>Andrews, C</creator><creator>Cropper, M. D</creator><creator>Gabbitas, A</creator><creator>Balanov, A. G</creator><creator>Savel'ev, S</creator><creator>Borisov, P</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1678-0756</orcidid><orcidid>https://orcid.org/0000-0003-2771-230X</orcidid><orcidid>https://orcid.org/0000-0003-1464-6999</orcidid><orcidid>https://orcid.org/0009-0008-9262-174X</orcidid><orcidid>https://orcid.org/0009-0003-8393-131X</orcidid></search><sort><creationdate>20231005</creationdate><title>Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons</title><author>Pattnaik, D. P ; Andrews, C ; Cropper, M. D ; Gabbitas, A ; Balanov, A. G ; Savel'ev, S ; Borisov, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Filaments</topic><topic>Gamma rays</topic><topic>Memristors</topic><topic>Nanoparticles</topic><topic>Neurons</topic><topic>Oxidation</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Silicon dioxide</topic><topic>Silver</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pattnaik, D. P</creatorcontrib><creatorcontrib>Andrews, C</creatorcontrib><creatorcontrib>Cropper, M. D</creatorcontrib><creatorcontrib>Gabbitas, A</creatorcontrib><creatorcontrib>Balanov, A. G</creatorcontrib><creatorcontrib>Savel'ev, S</creatorcontrib><creatorcontrib>Borisov, P</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pattnaik, D. P</au><au>Andrews, C</au><au>Cropper, M. D</au><au>Gabbitas, A</au><au>Balanov, A. G</au><au>Savel'ev, S</au><au>Borisov, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons</atitle><jtitle>Nanoscale</jtitle><date>2023-10-05</date><risdate>2023</risdate><volume>15</volume><issue>38</issue><spage>15665</spage><epage>15674</epage><pages>15665-15674</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica. Our experimental findings show that after exposure to radiation, the memristors and artificial neurons made of them demonstrate much better performance in terms of stable volatile resistive switching and higher spiking frequencies, respectively, compared to the pristine samples. At the same time we observe partial oxidation of silver and reduction of silicon within the switching silica layer. We propose nanoinclusions of reduced silicon distributed across the silica layer to be the backbone for metallic nanoparticles to form conductive filaments, as supported by our theoretical simulations of radiation-induced changes in the diffusion process. Our findings propose a new opportunity to engineer the required characteristics of diffusive memristors in order to emulate biological neurons and develop bio-inspired computational technology.
Gamma photons were used to break Si-O bonds in silicon oxide-based volatile memristor devices. The corresponding radiation-induced nanodefects were shown to significantly improve the resistive switching performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr01853a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1678-0756</orcidid><orcidid>https://orcid.org/0000-0003-2771-230X</orcidid><orcidid>https://orcid.org/0000-0003-1464-6999</orcidid><orcidid>https://orcid.org/0009-0008-9262-174X</orcidid><orcidid>https://orcid.org/0009-0003-8393-131X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-10, Vol.15 (38), p.15665-15674 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3NR01853A |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Filaments Gamma rays Memristors Nanoparticles Neurons Oxidation Radiation Radiation effects Silicon dioxide Silver Switching |
title | Gamma radiation-induced nanodefects in diffusive memristors and artificial neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gamma%20radiation-induced%20nanodefects%20in%20diffusive%20memristors%20and%20artificial%20neurons&rft.jtitle=Nanoscale&rft.au=Pattnaik,%20D.%20P&rft.date=2023-10-05&rft.volume=15&rft.issue=38&rft.spage=15665&rft.epage=15674&rft.pages=15665-15674&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr01853a&rft_dat=%3Cproquest_cross%3E2872686200%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-9d11ff3d3568bf5dfe4d30bb75f86493cd03f28ee7f54013dee259974a8f80783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872686200&rft_id=info:pmid/&rfr_iscdi=true |