Loading…
Use of demand response for voltage regulation in power distribution systems with flexible resources
In low-voltage power distribution systems with high penetration of photovoltaics (PVs) generation and electric vehicles (EVs), the over-voltage problem arises at times because of large PV generation, and under-voltage problem also arises sometimes because of simultaneous charging of massive EVs. Ove...
Saved in:
Published in: | IET generation, transmission & distribution transmission & distribution, 2020-03, Vol.14 (5), p.883-892 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In low-voltage power distribution systems with high penetration of photovoltaics (PVs) generation and electric vehicles (EVs), the over-voltage problem arises at times because of large PV generation, and under-voltage problem also arises sometimes because of simultaneous charging of massive EVs. Over- and under-voltage problems lead to more difficulties in achieving voltage regulation. Demand response (DR) is expected to be promising and cost-effective in promoting smart grids, and hence, the utilisation of flexible resources (FRs) through DR can be helpful for distribution system voltage regulation. This study introduces a hierarchical control structure of a community energy management system (CEMS) and multiple sub-CEMSs to apply an FR-based two-stage voltage regulation technique. In the first stage, i.e. the day-ahead scheduling stage, each sub-CEMS optimises the FRs’ schedules for minimising customers’ electricity cost and network voltage violation times. In the second stage, i.e. the real-time operation stage, the voltage sensitivity-based FRs’ shifting method is proposed to eliminate network voltage violations caused by errors of estimated day-ahead data. The proposed models and methods are verified based on a realistic distribution system in Japan, where voltage violations, customer electricity cost and a number of on-load tap changer tap operations are proved to be reduced. |
---|---|
ISSN: | 1751-8687 1751-8695 1751-8695 |
DOI: | 10.1049/iet-gtd.2019.1170 |