Loading…
Detection of Startle-Type Epileptic Seizures using Machine Learning Technique
Abstract Background Epilepsy is a common neurological disorder characterized by seizures and can lead to life-threatening consequences. The electroencephalogram (EEG) is a diagnostic test used to analyze brain activity in various neurological conditions including epilepsy and interpreted by the clin...
Saved in:
Published in: | International journal of epilepsy 2018-10, Vol.5 (2), p.092-098 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
Epilepsy is a common neurological disorder characterized by seizures and can lead to life-threatening consequences. The electroencephalogram (EEG) is a diagnostic test used to analyze brain activity in various neurological conditions including epilepsy and interpreted by the clinician for appropriate diagnosis. However, the process of EEG analysis for diagnosis can be automated using machine learning algorithms (MLAs) to aid the clinician. The objective of the study was to test different algorithms that could be used for the detection of seizures.
Materials and Methods
Video EEG (vEEG) was collected from subjects diagnosed to have episodes of seizures. The epilepsy dataset thus obtained was subjected to empirical mode decomposition (EMD) and the signal was decomposed into intrinsic mode functions (IMFs). The first five levels of decomposition were considered for analysis as per the established protocol. Statistical features such as interquartile range (IQR), entropy, and mean absolute deviation (MAD) were extracted from these IMFs.
Results
In this study, different MLAs such as nearest neighbor (NN), naïve Bayes (NB), and support vector machines (SVMs) were used to distinguish between normal (interictal) and abnormal (ictal) states. The demonstrated accuracy rates were 97.32% for NN, 99.02% for NB, and 93.75% for SVM.
Conclusion
Based on this accuracy and sensitivity, it may be posited that the NB classifier provides significantly better results for the detection of abnormal signals indicating that MLA can detect the seizure with better accuracy. |
---|---|
ISSN: | 2213-6320 2213-6339 |
DOI: | 10.1055/s-0039-1693072 |