Loading…

Thermoelectric properties of electrodeposited CuNi alloys on Si

Thin films with the composition of the constantan alloy (a solid solution with 35 to 50 wt. % of Ni in Cu) have a high-thermoelectric power, which allows the fabrication of very sensitive heat-flux sensors based on planar technology. In this article, the thermoelectric properties of CuxNi100−x thin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2003-05, Vol.93 (10), p.6154-6158
Main Authors: Delatorre, R. G., Sartorelli, M. L., Schervenski, A. Q., Pasa, A. A., Güths, S.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thin films with the composition of the constantan alloy (a solid solution with 35 to 50 wt. % of Ni in Cu) have a high-thermoelectric power, which allows the fabrication of very sensitive heat-flux sensors based on planar technology. In this article, the thermoelectric properties of CuxNi100−x thin films electrodeposited on silicon were studied as a function of the composition, temperature, and thickness. The electrodeposition of thin layers on silicon is an important step for the integration of thermal sensors with semiconductor technology. The CuxNi100−x alloys were electrodeposited potentiostatically at room temperature, from a citrate electrolyte containing both copper and nickel sulfates. The layer composition was controlled by the applied potential in the range from pure copper (at −0.4 V/SCE) up to a solid solution of about 25 wt. % Cu in Ni (at −1.2 V/SCE). Extremely high values of thermoelectric power were measured for very thin layers of Cu40Ni60 on Si, showing a strong influence of the substrate. By considering the system as a thermoelectric bilayer and extracting the contribution of the semiconductor, thermopower values for the Cu40Ni60 alloys comparable to the expected ones for constantan wires were obtained.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1569432