Loading…

Fast numerical calculation for crack modeling in eddy current testing of ferromagnetic materials

Eddy current testing (ECT) is a nondestructive testing method for metal materials. Numerical methods are applied to predict the ECT signals, to aid in the design of ECT probes, and to reconstruct crack shapes from their ECT signals. For the testing of nonferromagnetic materials, the high accuracy of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2003-11, Vol.94 (9), p.5866-5872
Main Authors: Huang, Haoyu, Takagi, Toshiyuki, Uchimoto, Tetsuya
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eddy current testing (ECT) is a nondestructive testing method for metal materials. Numerical methods are applied to predict the ECT signals, to aid in the design of ECT probes, and to reconstruct crack shapes from their ECT signals. For the testing of nonferromagnetic materials, the high accuracy of some numerical simulation techniques has been demonstrated and several fast computational methods have been presented. However, the numerical calculation of electromagnetic fields in ferromagnetic materials remains a difficult and time-consuming task. Representing cracks in ferromagnetic materials with secondary electric and magnetic sources leads to a fast method for predicting ECT signals as presented in this article. The method developed here, that can be used to treat ferromagnetics, is an extension of the precomputed database approach based on the magnetic vector potential method. With the aid of precomputed databases, ECT signals of different cracks can be computed from changes in the secondary sources in a small region, without considering the geometries of the whole conductor. This results in fewer degrees of freedom than those of typical finite element approaches, and the method provides a forward simulator that is about 80 times faster than the conventional one without loss of accuracy, even in the case of ferromagnetic materials.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1613809