Loading…
Lowering and Raising Operators for the Orthogonal Group in the Chain O(n) ⊃ O(n − 1) ⊃ … , and their Graphs
Normalized lowering and raising operators are constructed for the orthogonal group in the canonical group chain O(n) ⊃ O(n − 1) ⊃ … ⊃ O(2) with the aid of graphs which simplify their construction. By successive application of such lowering operators for O(n), O(n − 1), … on the highest weight states...
Saved in:
Published in: | Journal of mathematical physics 1967-06, Vol.8 (6), p.1233-1251 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Normalized lowering and raising operators are constructed for the orthogonal group in the canonical group chain O(n) ⊃ O(n − 1) ⊃ … ⊃ O(2) with the aid of graphs which simplify their construction. By successive application of such lowering operators for O(n), O(n − 1), … on the highest weight states for each step of the chain, an explicit construction is given for the normalized basis vectors. To illustrate the usefulness of the construction, a derivation is given of the Gel'fand‐Zetlin matrix elements of the infinitesimal generators of O(n). |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.1705340 |