Loading…
Polymeric tandem organic light-emitting diodes using a self-organized interfacial layer
The authors have demonstrated efficient polymeric tandem organic light-emitting diodes (OLEDs) with a self-organized interfacial layer, which was formed by differences in chemical surface energy. Hydrophilic poly(styrene sulfonate)-doped poly(3,4-ethylene dioxythiophene) (PEDOT:PSS) was spin coated...
Saved in:
Published in: | Applied physics letters 2008-03, Vol.92 (10), p.103301-103301-3 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The authors have demonstrated efficient polymeric tandem organic light-emitting diodes (OLEDs) with a self-organized interfacial layer, which was formed by differences in chemical surface energy. Hydrophilic poly(styrene sulfonate)-doped poly(3,4-ethylene dioxythiophene) (PEDOT:PSS) was spin coated onto the hydrophobic poly(9,9-dyoctilfluorene) (PFO) surface and a PEDOT:PSS bubble or dome was built as an interfacial layer. The barrier heights of PEDOT:PSS and PFO in the two-unit tandem OLED induced a charge accumulation at the interface in the heterojunction and thereby created exciton recombination at a much higher level than in the one-unit reference. This effect was confirmed in both the hole only and the electron only devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.2894072 |