Loading…
Inertial oscillations in a confined monopolar vortex subjected to background rotation
We study the axisymmetric inertial oscillations in a confined monopolar vortex under the influence of background rotation. By first focusing on the inviscid linear dynamics, and later studying the effects of viscosity and of a no-slip bottom, we characterize the effects of rotation and confinement....
Saved in:
Published in: | Physics of fluids (1994) 2009-11, Vol.21 (11) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the axisymmetric inertial oscillations in a confined monopolar vortex under the influence of background rotation. By first focusing on the inviscid linear dynamics, and later studying the effects of viscosity and of a no-slip bottom, we characterize the effects of rotation and confinement. It was found that background rotation allows for oscillations outside the vortex core even with frequencies larger than 2Ω, with Ω the background rotation rate. However, confinement is necessary for the system to sustain oscillations with frequencies smaller than 2Ω. Through the analytical solution for a small perturbation of a Rankine vortex, we obtain five regimes where the oscillations are qualitatively different, depending on their frequency. Numerical results for the linear inviscid waves sustained by a Lamb–Oseen vortex show a similar behavior. The effects of viscosity are twofold: the oscillations are damped and the vortex sustaining the oscillations is modified. When a no-slip bottom is considered, a boundary layer drives a secondary motion superimposed on the inertial oscillations. In this case, the vortex is quickly damped, but the oscillations persist due to the background rotation. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.3258670 |