Loading…

Electronic transport in Pd nanocluster devices

Palladium nanoclusters with an average diameter of 6.7 nm are prepared by magnetron sputtering and inert gas condensation technique. The nanoclusters are deposited between a pair of electrodes defined by optical lithography to create the device. The electronic transport in the devices is investigate...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2011-03, Vol.98 (13), p.133108-133108-3
Main Author: Ayesh, A. I.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-13c6c3e946e72cae2e7e42b3f2d583c7c16c8b8eb50ff85cfd8938b7fa6e892b3
cites cdi_FETCH-LOGICAL-c350t-13c6c3e946e72cae2e7e42b3f2d583c7c16c8b8eb50ff85cfd8938b7fa6e892b3
container_end_page 133108-3
container_issue 13
container_start_page 133108
container_title Applied physics letters
container_volume 98
creator Ayesh, A. I.
description Palladium nanoclusters with an average diameter of 6.7 nm are prepared by magnetron sputtering and inert gas condensation technique. The nanoclusters are deposited between a pair of electrodes defined by optical lithography to create the device. The electronic transport in the devices is investigated by systematic current-voltage measurements. It is demonstrated through fitting the conductance-temperature profile into a conductance model that the conductance in the device is dominated by tunneling. The fitting provides meaningful physical parameters such as the number of nanoclusters within the conduction path, and it shows that some of the nanoclusters are fused together.
doi_str_mv 10.1063/1.3574012
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3574012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-13c6c3e946e72cae2e7e42b3f2d583c7c16c8b8eb50ff85cfd8938b7fa6e892b3</originalsourceid><addsrcrecordid>eNp1z09LxDAQh-EgCtbVg9-gVw-tSadp0osgy_oHFvSg55BOJxCp6ZJEwW9vZRc9eRoGXn7wMHYpeC14B9eiBqlaLpojVgiuVAVC6GNWcM6h6nopTtlZSm_LKxuAgtWbiTDHOXgsc7Qh7eaYSx_K57EMNsw4faRMsRzp0yOlc3bi7JTo4nBX7PVu87J-qLZP94_r222FIHmuBGCHQH3bkWrQUkOK2mYA14xSAyoUHepB0yC5c1qiG3UPelDOdqT7JVyxq_0uxjmlSM7son-38csIbn6gRpgDdGlv9m1Cn232c_g__tOaXy18A45RWxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic transport in Pd nanocluster devices</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ayesh, A. I.</creator><creatorcontrib>Ayesh, A. I.</creatorcontrib><description>Palladium nanoclusters with an average diameter of 6.7 nm are prepared by magnetron sputtering and inert gas condensation technique. The nanoclusters are deposited between a pair of electrodes defined by optical lithography to create the device. The electronic transport in the devices is investigated by systematic current-voltage measurements. It is demonstrated through fitting the conductance-temperature profile into a conductance model that the conductance in the device is dominated by tunneling. The fitting provides meaningful physical parameters such as the number of nanoclusters within the conduction path, and it shows that some of the nanoclusters are fused together.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3574012</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2011-03, Vol.98 (13), p.133108-133108-3</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-13c6c3e946e72cae2e7e42b3f2d583c7c16c8b8eb50ff85cfd8938b7fa6e892b3</citedby><cites>FETCH-LOGICAL-c350t-13c6c3e946e72cae2e7e42b3f2d583c7c16c8b8eb50ff85cfd8938b7fa6e892b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3574012$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76352</link.rule.ids></links><search><creatorcontrib>Ayesh, A. I.</creatorcontrib><title>Electronic transport in Pd nanocluster devices</title><title>Applied physics letters</title><description>Palladium nanoclusters with an average diameter of 6.7 nm are prepared by magnetron sputtering and inert gas condensation technique. The nanoclusters are deposited between a pair of electrodes defined by optical lithography to create the device. The electronic transport in the devices is investigated by systematic current-voltage measurements. It is demonstrated through fitting the conductance-temperature profile into a conductance model that the conductance in the device is dominated by tunneling. The fitting provides meaningful physical parameters such as the number of nanoclusters within the conduction path, and it shows that some of the nanoclusters are fused together.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1z09LxDAQh-EgCtbVg9-gVw-tSadp0osgy_oHFvSg55BOJxCp6ZJEwW9vZRc9eRoGXn7wMHYpeC14B9eiBqlaLpojVgiuVAVC6GNWcM6h6nopTtlZSm_LKxuAgtWbiTDHOXgsc7Qh7eaYSx_K57EMNsw4faRMsRzp0yOlc3bi7JTo4nBX7PVu87J-qLZP94_r222FIHmuBGCHQH3bkWrQUkOK2mYA14xSAyoUHepB0yC5c1qiG3UPelDOdqT7JVyxq_0uxjmlSM7son-38csIbn6gRpgDdGlv9m1Cn232c_g__tOaXy18A45RWxI</recordid><startdate>20110328</startdate><enddate>20110328</enddate><creator>Ayesh, A. I.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110328</creationdate><title>Electronic transport in Pd nanocluster devices</title><author>Ayesh, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-13c6c3e946e72cae2e7e42b3f2d583c7c16c8b8eb50ff85cfd8938b7fa6e892b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayesh, A. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayesh, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in Pd nanocluster devices</atitle><jtitle>Applied physics letters</jtitle><date>2011-03-28</date><risdate>2011</risdate><volume>98</volume><issue>13</issue><spage>133108</spage><epage>133108-3</epage><pages>133108-133108-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Palladium nanoclusters with an average diameter of 6.7 nm are prepared by magnetron sputtering and inert gas condensation technique. The nanoclusters are deposited between a pair of electrodes defined by optical lithography to create the device. The electronic transport in the devices is investigated by systematic current-voltage measurements. It is demonstrated through fitting the conductance-temperature profile into a conductance model that the conductance in the device is dominated by tunneling. The fitting provides meaningful physical parameters such as the number of nanoclusters within the conduction path, and it shows that some of the nanoclusters are fused together.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3574012</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2011-03, Vol.98 (13), p.133108-133108-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_3574012
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Electronic transport in Pd nanocluster devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T00%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20Pd%20nanocluster%20devices&rft.jtitle=Applied%20physics%20letters&rft.au=Ayesh,%20A.%20I.&rft.date=2011-03-28&rft.volume=98&rft.issue=13&rft.spage=133108&rft.epage=133108-3&rft.pages=133108-133108-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3574012&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-13c6c3e946e72cae2e7e42b3f2d583c7c16c8b8eb50ff85cfd8938b7fa6e892b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true