Loading…

Applying x-ray microscopy and finite element modeling to identify the mechanism of stress-assisted void growth in through-silicon vias

Fabricating through-silicon vias (TSVs) is challenging, especially for conformally filled TSVs, often hampered by the seam line and void inside the TSVs. Stress-assisted void growth in TSVs has been studied by finite element stress modeling and x-ray computed tomography (XCT). Because x-ray imaging...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2011-09, Vol.110 (5), p.053502-053502-7
Main Authors: Kong, L. W., Lloyd, J. R., Yeap, K. B, Zschech, E., Rudack, A., Liehr, M., Diebold, A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fabricating through-silicon vias (TSVs) is challenging, especially for conformally filled TSVs, often hampered by the seam line and void inside the TSVs. Stress-assisted void growth in TSVs has been studied by finite element stress modeling and x-ray computed tomography (XCT). Because x-ray imaging does not require TSVs to be physically cross-sectioned, the same TSV can be imaged before and after annealing. Using 8 keV laboratory-based XCT, voids formed during copper electroplating are observed in as-deposited samples and void growth is observed at the void location after annealing. We hypothesize that the mechanism generating voids is hydrostatic stress-assisted void growth. Stresses in a copper-filled TSV with a pre-existing void were simulated by finite element methods. The peaks of the hydrostatic stress and its gradient are shown to be around the edge of the void. Comparing simulated results and experimental data shows that void growth in TSVs is stress-assisted: vacancies diffuse and coalesce at the void as a result of the hydrostatic stress gradient.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3629988