Loading…
Split 3-Lie algebras
In order to begin an approach to the structure of 3-Lie algebras (with restrictions neither on the dimension nor on the base field), we introduce the class of split 3-Lie algebras as the natural extension of the class of split Lie algebras. By developing techniques of connections of roots for this k...
Saved in:
Published in: | Journal of mathematical physics 2011-12, Vol.52 (12), p.123503-123503-16 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to begin an approach to the structure of 3-Lie algebras (with restrictions neither on the dimension nor on the base field), we introduce the class of split 3-Lie algebras as the natural extension of the class of split Lie algebras. By developing techniques of connections of roots for this kind of ternary algebras, we show that any of such split 3-Lie algebras
\documentclass[12pt]{minimal}\begin{document}${\mathfrak T}$\end{document}
T
is of the form
\documentclass[12pt]{minimal}\begin{document}${\mathfrak T}={\mathcal U} +\sum \limits _{j}I_{j}$\end{document}
T
=
U
+
∑
j
I
j
with
\documentclass[12pt]{minimal}\begin{document}${\mathcal U}$\end{document}
U
a subspace of the 0-root space
\documentclass[12pt]{minimal}\begin{document}${\mathfrak T}_0$\end{document}
T
0
and any I
j
a well described ideal of
\documentclass[12pt]{minimal}\begin{document}${\mathfrak T}$\end{document}
T
, satisfying
\documentclass[12pt]{minimal}\begin{document}$[I_j,{\mathfrak T},I_k]=0$\end{document}
[
I
j
,
T
,
I
k
]
=
0
if j ≠ k. Under certain conditions the simplicity of
\documentclass[12pt]{minimal}\begin{document}${\mathfrak T}$\end{document}
T
is characterized and it is shown that
\documentclass[12pt]{minimal}\begin{document}${\mathfrak T}$\end{document}
T
is the direct sum of the family of its minimal ideals, each one being a simple split 3-Lie algebra. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.3664752 |