Loading…

Split 3-Lie algebras

In order to begin an approach to the structure of 3-Lie algebras (with restrictions neither on the dimension nor on the base field), we introduce the class of split 3-Lie algebras as the natural extension of the class of split Lie algebras. By developing techniques of connections of roots for this k...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2011-12, Vol.52 (12), p.123503-123503-16
Main Authors: CALDERON MARTIN, Antonio J, FORERO PIULESTAN, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to begin an approach to the structure of 3-Lie algebras (with restrictions neither on the dimension nor on the base field), we introduce the class of split 3-Lie algebras as the natural extension of the class of split Lie algebras. By developing techniques of connections of roots for this kind of ternary algebras, we show that any of such split 3-Lie algebras \documentclass[12pt]{minimal}\begin{document}${\mathfrak T}$\end{document} T is of the form \documentclass[12pt]{minimal}\begin{document}${\mathfrak T}={\mathcal U} +\sum \limits _{j}I_{j}$\end{document} T = U + ∑ j I j with \documentclass[12pt]{minimal}\begin{document}${\mathcal U}$\end{document} U a subspace of the 0-root space \documentclass[12pt]{minimal}\begin{document}${\mathfrak T}_0$\end{document} T 0 and any I j a well described ideal of \documentclass[12pt]{minimal}\begin{document}${\mathfrak T}$\end{document} T , satisfying \documentclass[12pt]{minimal}\begin{document}$[I_j,{\mathfrak T},I_k]=0$\end{document} [ I j , T , I k ] = 0 if j ≠ k. Under certain conditions the simplicity of \documentclass[12pt]{minimal}\begin{document}${\mathfrak T}$\end{document} T is characterized and it is shown that \documentclass[12pt]{minimal}\begin{document}${\mathfrak T}$\end{document} T is the direct sum of the family of its minimal ideals, each one being a simple split 3-Lie algebra.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.3664752