Loading…
State-to-state dynamics of H+HX collisions. I: The H+HX→H2+X (X=Cl, Br, I) abstraction reactions at 1.6 eV collision energy
The rotational and vibrational state distributions of the H2 product from the reactions of translationally excited H atoms with HCl, HBr, and HI at 1.6 eV are probed by coherent anti-Stokes Raman scattering spectroscopy after only one collision of the fast H atom. Despite the high collision energy,...
Saved in:
Published in: | The Journal of chemical physics 1989-05, Vol.90 (9), p.4795-4808 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rotational and vibrational state distributions of the H2 product from the reactions of translationally excited H atoms with HCl, HBr, and HI at 1.6 eV are probed by coherent anti-Stokes Raman scattering spectroscopy after only one collision of the fast H atom. Despite the high collision energy, only the very exoergic (ΔH=−1.4 eV) hydrogen atom abstraction involving HI leads to appreciable H2 product vibrational excitation. For this reaction the H2 vibrational distribution is strongly inverted and peaks in v′=1, with 25% of the total available energy partitioned to vibration. For the mildy exoergic (ΔH=−0.72 eV) reaction with HBr and the nearly thermoneutral (ΔH=−0.05 eV) reaction with HCl, very little energy appears in H2 vibration, 9% and 2%, respectively, and the vibrational state distributions peak at v′=0. However, in all three reactions a significant fraction, 18% to 21%, of the total energy available appears as H2 rotation. All three reactions show a strong propensity to conserve the translational energy, that is the translational energy of the H2+X products is very nearly the same as that of the H+HX reactants. For the reactions with HCl, HBr, and HI the average translational energy of the products is 1.3, 1.7, and 1.7 eV, respectively, and the width of the translational energy distribution is only about 0.5 eV full width at half maximum. The energy disposal in all three reactions is quite specific, despite the fact that this high collision energy is well above the barrier to reaction in all three systems and a large number of product quantum states are energetically accessible. Only a few of these energetically allowed final states are appreciably populated. Although detailed theoretical calculations will be required to account completely for the state specifity, quite simple models of the reaction dynamics can explain much of the dynamical bias that we observe. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.456574 |