Loading…

Statistical and nonstatistical effects in bond fission reactions of SiH2 and Si2H6

An efficient implementation of microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fissions in SiH2 and Si2H6 using recently constructed global potential-energy surfaces. Comparison is made...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 1991-03, Vol.94 (6), p.4219-4229
Main Authors: SCHRANZ, H. W, RAFF, L. M, THOMPSON, D. L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An efficient implementation of microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fissions in SiH2 and Si2H6 using recently constructed global potential-energy surfaces. Comparison is made with results of trajectory calculations performed on the same potential-energy surfaces. The predictions of the statistical theory agree well with and provide an upper bound to the trajectory derived rate constants for SiH2→SiH+H. In the case of Si2H6, agreement between the statistical theory and trajectory results for Si–Si and Si–H bond fission is poor with differences as large as a factor of 72. Moreover, at the lower energies studied, the statistical calculations predict considerably slower rates of bond fission than those calculated from trajectories. These results indicate that the statistical assumptions inherent in the transition-state theory method are not valid for disilane in spite of the fact that many of the mode-to-mode rate constants for intramolecular energy transfer in this molecule are large relative to the Si–Si and Si–H bond fission rates. There are indications that such behavior may be widespread among large, polyatomic molecules.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.460630