Loading…

Nucleation in superheated liquid argon–krypton solutions

We report nucleation-rate measurements in metastable liquid argon–krypton solutions at pressures of 1.0 and 1.6 MPa over a wide temperature and concentration range. These measurements were performed with the use of a superheated liquid lifetime measurement method. The experimental results are compar...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 1997-04, Vol.106 (13), p.5648-5657
Main Authors: Baidakov, V. G., Kaverin, A. M., Boltachev, G. Sh
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report nucleation-rate measurements in metastable liquid argon–krypton solutions at pressures of 1.0 and 1.6 MPa over a wide temperature and concentration range. These measurements were performed with the use of a superheated liquid lifetime measurement method. The experimental results are compared with the homogeneous nucleation theory data both using a macroscopic (capillary) approach and taking into account the dependence of critical bubble surface tension on interface curvature. The size effect in nucleation is considered in the framework of the Van-der-Waals, Cahn–Hilliard method. The experimental data indicate that the homogeneous nucleation theory quantitatively describes the kinetics of a first order phase transition in binary solutions of simple liquids if the size effect is taken into account and nucleation rates are J≳106 m−3 sec−1. At J≲106 m−3 sec−1 there is initiated nucleation. A diffusion spinodal of a solution is approximated. The attainable superheating temperature data are presented.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.473585