Loading…
Plane waveguides with corners in the small angle limit
The plane waveguides with corners considered here are infinite V-shaped strips with constant thickness. They are parametrized by their sole opening angle. We study the eigenpairs of the Dirichlet Laplacian in such domains when this angle tends to 0. We provide multi-scale asymptotics for eigenpairs...
Saved in:
Published in: | Journal of mathematical physics 2012-12, Vol.53 (12), p.1 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The plane waveguides with corners considered here are infinite V-shaped strips with constant thickness. They are parametrized by their sole opening angle. We study the eigenpairs of the Dirichlet Laplacian in such domains when this angle tends to 0. We provide multi-scale asymptotics for eigenpairs associated with the lowest eigenvalues. For this, we investigate the eigenpairs of a one-dimensional model which can be viewed as their Born-Oppenheimer approximation. We also investigate the Dirichlet Laplacian on triangles with sharp angles. The eigenvalue asymptotics involve powers of the cube root of the angle, while the eigenvector asymptotics include simultaneously two scales in the triangular part, and one scale in the straight part of the guides. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4769993 |