Loading…

Anomalous cryoprotective effectiveness of trehalose: Raman scattering evidences

Results of Raman scattering measurements performed on aqueous solutions of the homologous disaccharides (trehalose, maltose, and sucrose) are reported. To get some insight into the effects of disaccharides on the hydrogen bond network of water, and to clarify the reasons that make trehalose the most...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 1999-07, Vol.111 (1), p.281-287
Main Authors: Branca, C., Magazù, S., Maisano, G., Migliardo, P.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Results of Raman scattering measurements performed on aqueous solutions of the homologous disaccharides (trehalose, maltose, and sucrose) are reported. To get some insight into the effects of disaccharides on the hydrogen bond network of water, and to clarify the reasons that make trehalose the most effective in protecting organisms from dehydration and freezing, we investigate the intramolecular OH stretching mode. To carry out this study, two different approaches are employed: namely, a decomposition of the isotropic spectra into an “open” and a “closed” contribution, and a spectral stripping procedure to extract the “collective” contribution from the polarized spectra. Both procedures agree in suggesting that disaccharides promote, with a different strength, a destructuring effect on the tetrahedral H-bond network of pure water. This result makes plausible the hypothesis that disaccharides obstruct the crystallization process reducing the amount of freezable water, namely destroying the network of water compatible with that of ice. What conclusively emerges from this Raman scattering study is that the greater bioprotective action of trehalose on biological structures is to be connected with its greater destructuring effect on the tetrahedral H-bond network of water.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.479288