Loading…
Non-self-adjoint Hamiltonians defined by generalized Riesz bases
Bagarello, Inoue, and Trapani [J. Math. Phys. 55, 033501 (2014)] investigated some operators defined by the Riesz bases. These operators connect with quasi-Hermitian quantum mechanics, and its relatives. In this paper, we introduce a notion of generalized Riesz bases which is a generalization of Rie...
Saved in:
Published in: | Journal of mathematical physics 2016-08, Vol.57 (8), p.1 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bagarello, Inoue, and Trapani [J. Math. Phys. 55, 033501 (2014)] investigated some operators defined by the Riesz bases. These operators connect with quasi-Hermitian quantum mechanics, and its relatives. In this paper, we introduce a notion of generalized Riesz bases which is a generalization of Riesz bases and investigate some operators defined by the generalized Riesz bases by changing the frameworks of the operators defined in the work of Bagarello, Inoue, and Trapani. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4960721 |