Loading…

Sub-picometer multi-wavelength detector based on highly sensitive nanomechanical resonator

The wavelength division multiplexing (WDM) method for near infrared (NIR) optical fiber (1530–1565 nm) is the system that is wildly used for intercontinental communication. WDM achieves high-speed and large-capacity communication, but costs a lot because the high-resolution (∼10 pm) wavelength locke...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2017-07, Vol.111 (1)
Main Authors: Maeda, Etsuo, Kometani, Reo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The wavelength division multiplexing (WDM) method for near infrared (NIR) optical fiber (1530–1565 nm) is the system that is wildly used for intercontinental communication. WDM achieves high-speed and large-capacity communication, but costs a lot because the high-resolution (∼10 pm) wavelength locker for wavelength stabilization only corresponds to a single wavelength. In this report, we propose a highly sensitive sub-picometer multi-wavelength detector that substitutes a typical single-wavelength detector for WDM. Our wavelength detector consists of a narrow band (FWHM  20 000) nanomechanical resonator. The photonic absorber confines and transforms the illuminated NIR light wave into thermal stress, and then, the thermal stress in the nanomechanical resonator will appear as the eigenfrequency shift of the nanomechanical resonator. Through experimental works with an NIR laser and optical Doppler vibration meter, the sensitivity of our wavelength detector was determined to be 0.196 pm in the 10-nm-range of the NIR region. Our sub-picometer multi-wavelength detector will achieve a fast, wide-band, and cost-effective optical communication system.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4991683