Loading…

Feynman diagram description of 2D-Raman-THz spectroscopy applied to water

2D-Raman-THz spectroscopy of liquid water, which has been presented recently [J. Savolainen et al., Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)], directly probes the intermolecular degrees of freedom of the hydrogen-bond network. However, being a relatively new technique, its information conte...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2019-01, Vol.150 (4), p.044202-044202
Main Authors: Sidler, David, Hamm, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:2D-Raman-THz spectroscopy of liquid water, which has been presented recently [J. Savolainen et al., Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)], directly probes the intermolecular degrees of freedom of the hydrogen-bond network. However, being a relatively new technique, its information content is not fully explored to date. While the spectroscopic signal can be simulated based on molecular dynamics simulation in connection with a water force field, it is difficult to relate spectroscopic signatures to the underlying microscopic features of the force field. Here, a completely different approach is taken that starts from an as simple as possible model, i.e., a single vibrational mode with electrical and mechanical anharmonicity augmented with homogeneous and inhomogeneous broadening. An intuitive Feynman diagram picture is developed for all possible pulse sequences of hybrid 2D-Raman-THz spectroscopy. It is shown that the model can explain the experimental data essentially quantitatively with a very small set of parameters, and it is tentatively concluded that the experimental signal originates from the hydrogen-bond stretching vibration around 170 cm−1. Furthermore, the echo observed in the experimental data can be quantified by fitting the model. A dominant fraction of its linewidth is attributed to quasi-inhomogeneous broadening in the slow-modulation limit with a correlation time of 370 fs, reflecting the lifetime of the hydrogen-bond networks giving rise to the absorption band.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5079497