Loading…
On the modulational stability of traveling and standing water waves
Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stab...
Saved in:
Published in: | Physics of fluids (1994) 1994-03, Vol.6 (3), p.1177-1190 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stability properties of stationary standing and quasiperiodic waves are determined as a function of surface tension and fluid depth for both long wavelength longitudinal and transverse perturbations. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.868288 |