Loading…
On the modulational stability of traveling and standing water waves
Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stab...
Saved in:
Published in: | Physics of fluids (1994) 1994-03, Vol.6 (3), p.1177-1190 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523 |
container_end_page | 1190 |
container_issue | 3 |
container_start_page | 1177 |
container_title | Physics of fluids (1994) |
container_volume | 6 |
creator | Pierce, R. D. Knobloch, E. |
description | Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stability properties of stationary standing and quasiperiodic waves are determined as a function of surface tension and fluid depth for both long wavelength longitudinal and transverse perturbations. |
doi_str_mv | 10.1063/1.868288 |
format | article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_868288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_868288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523</originalsourceid><addsrcrecordid>eNqdj8FKAzEQhoMoWKvgI-xRD1uTSXeSHGXRKhR60XNIdhONbHdLElf69nat-ABe5p9hPn74CLlmdMEo8ju2kChByhMyY1SqUiDi6bQLWiJydk4uUvqglHIFOCP1pi_yuyu2Q_vZmRyG3nRFysaGLuR9MfgiRzO6LvRvhenb6dW30_FlsouHObp0Sc686ZK7-s05eX18eKmfyvVm9Vzfr8sGFM-loMouBVouPVKQ3FbYNMicsA6RMgZWeODWgWVceWeUXCqgpgKAVkAFfE5ujr1NHFKKzutdDFsT95pRPclrpo_yB_T2iKYm5B-tf7HjEP84vWs9_wYfUmce</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the modulational stability of traveling and standing water waves</title><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Pierce, R. D. ; Knobloch, E.</creator><creatorcontrib>Pierce, R. D. ; Knobloch, E.</creatorcontrib><description>Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stability properties of stationary standing and quasiperiodic waves are determined as a function of surface tension and fluid depth for both long wavelength longitudinal and transverse perturbations.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.868288</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><ispartof>Physics of fluids (1994), 1994-03, Vol.6 (3), p.1177-1190</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523</citedby><cites>FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Pierce, R. D.</creatorcontrib><creatorcontrib>Knobloch, E.</creatorcontrib><title>On the modulational stability of traveling and standing water waves</title><title>Physics of fluids (1994)</title><description>Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stability properties of stationary standing and quasiperiodic waves are determined as a function of surface tension and fluid depth for both long wavelength longitudinal and transverse perturbations.</description><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqdj8FKAzEQhoMoWKvgI-xRD1uTSXeSHGXRKhR60XNIdhONbHdLElf69nat-ABe5p9hPn74CLlmdMEo8ju2kChByhMyY1SqUiDi6bQLWiJydk4uUvqglHIFOCP1pi_yuyu2Q_vZmRyG3nRFysaGLuR9MfgiRzO6LvRvhenb6dW30_FlsouHObp0Sc686ZK7-s05eX18eKmfyvVm9Vzfr8sGFM-loMouBVouPVKQ3FbYNMicsA6RMgZWeODWgWVceWeUXCqgpgKAVkAFfE5ujr1NHFKKzutdDFsT95pRPclrpo_yB_T2iKYm5B-tf7HjEP84vWs9_wYfUmce</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Pierce, R. D.</creator><creator>Knobloch, E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940301</creationdate><title>On the modulational stability of traveling and standing water waves</title><author>Pierce, R. D. ; Knobloch, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierce, R. D.</creatorcontrib><creatorcontrib>Knobloch, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierce, R. D.</au><au>Knobloch, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the modulational stability of traveling and standing water waves</atitle><jtitle>Physics of fluids (1994)</jtitle><date>1994-03-01</date><risdate>1994</risdate><volume>6</volume><issue>3</issue><spage>1177</spage><epage>1190</epage><pages>1177-1190</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stability properties of stationary standing and quasiperiodic waves are determined as a function of surface tension and fluid depth for both long wavelength longitudinal and transverse perturbations.</abstract><doi>10.1063/1.868288</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 1994-03, Vol.6 (3), p.1177-1190 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_868288 |
source | AIP_美国物理联合会期刊回溯(NSTL购买) |
title | On the modulational stability of traveling and standing water waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20modulational%20stability%20of%20traveling%20and%20standing%20water%20waves&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Pierce,%20R.%20D.&rft.date=1994-03-01&rft.volume=6&rft.issue=3&rft.spage=1177&rft.epage=1190&rft.pages=1177-1190&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.868288&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_868288%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |