Loading…

On the modulational stability of traveling and standing water waves

Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stab...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 1994-03, Vol.6 (3), p.1177-1190
Main Authors: Pierce, R. D., Knobloch, E.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523
cites cdi_FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523
container_end_page 1190
container_issue 3
container_start_page 1177
container_title Physics of fluids (1994)
container_volume 6
creator Pierce, R. D.
Knobloch, E.
description Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stability properties of stationary standing and quasiperiodic waves are determined as a function of surface tension and fluid depth for both long wavelength longitudinal and transverse perturbations.
doi_str_mv 10.1063/1.868288
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_868288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_868288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523</originalsourceid><addsrcrecordid>eNqdj8FKAzEQhoMoWKvgI-xRD1uTSXeSHGXRKhR60XNIdhONbHdLElf69nat-ABe5p9hPn74CLlmdMEo8ju2kChByhMyY1SqUiDi6bQLWiJydk4uUvqglHIFOCP1pi_yuyu2Q_vZmRyG3nRFysaGLuR9MfgiRzO6LvRvhenb6dW30_FlsouHObp0Sc686ZK7-s05eX18eKmfyvVm9Vzfr8sGFM-loMouBVouPVKQ3FbYNMicsA6RMgZWeODWgWVceWeUXCqgpgKAVkAFfE5ujr1NHFKKzutdDFsT95pRPclrpo_yB_T2iKYm5B-tf7HjEP84vWs9_wYfUmce</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the modulational stability of traveling and standing water waves</title><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Pierce, R. D. ; Knobloch, E.</creator><creatorcontrib>Pierce, R. D. ; Knobloch, E.</creatorcontrib><description>Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stability properties of stationary standing and quasiperiodic waves are determined as a function of surface tension and fluid depth for both long wavelength longitudinal and transverse perturbations.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.868288</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><ispartof>Physics of fluids (1994), 1994-03, Vol.6 (3), p.1177-1190</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523</citedby><cites>FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Pierce, R. D.</creatorcontrib><creatorcontrib>Knobloch, E.</creatorcontrib><title>On the modulational stability of traveling and standing water waves</title><title>Physics of fluids (1994)</title><description>Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stability properties of stationary standing and quasiperiodic waves are determined as a function of surface tension and fluid depth for both long wavelength longitudinal and transverse perturbations.</description><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqdj8FKAzEQhoMoWKvgI-xRD1uTSXeSHGXRKhR60XNIdhONbHdLElf69nat-ABe5p9hPn74CLlmdMEo8ju2kChByhMyY1SqUiDi6bQLWiJydk4uUvqglHIFOCP1pi_yuyu2Q_vZmRyG3nRFysaGLuR9MfgiRzO6LvRvhenb6dW30_FlsouHObp0Sc686ZK7-s05eX18eKmfyvVm9Vzfr8sGFM-loMouBVouPVKQ3FbYNMicsA6RMgZWeODWgWVceWeUXCqgpgKAVkAFfE5ujr1NHFKKzutdDFsT95pRPclrpo_yB_T2iKYm5B-tf7HjEP84vWs9_wYfUmce</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Pierce, R. D.</creator><creator>Knobloch, E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940301</creationdate><title>On the modulational stability of traveling and standing water waves</title><author>Pierce, R. D. ; Knobloch, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierce, R. D.</creatorcontrib><creatorcontrib>Knobloch, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierce, R. D.</au><au>Knobloch, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the modulational stability of traveling and standing water waves</atitle><jtitle>Physics of fluids (1994)</jtitle><date>1994-03-01</date><risdate>1994</risdate><volume>6</volume><issue>3</issue><spage>1177</spage><epage>1190</epage><pages>1177-1190</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Asymptotically exact evolution equations are derived for trains of small amplitude counterpropagating water waves over finite depth. Surface tension is included. The resulting equations are nonlocal and generalize the equations derived by Davey and Stewartson for unidirectional wave trains. The stability properties of stationary standing and quasiperiodic waves are determined as a function of surface tension and fluid depth for both long wavelength longitudinal and transverse perturbations.</abstract><doi>10.1063/1.868288</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 1994-03, Vol.6 (3), p.1177-1190
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_868288
source AIP_美国物理联合会期刊回溯(NSTL购买)
title On the modulational stability of traveling and standing water waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20modulational%20stability%20of%20traveling%20and%20standing%20water%20waves&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Pierce,%20R.%20D.&rft.date=1994-03-01&rft.volume=6&rft.issue=3&rft.spage=1177&rft.epage=1190&rft.pages=1177-1190&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.868288&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_868288%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-709b476b38f60283b56cc61e7be660112b7f23be2b139fea984920a5222d72523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true