Loading…

Achieving high strength and high ductility in nanostructured metals: Experiment and modelling

Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Chinagrains to a^1-martensite nanograins with bimodal grain size distribution for lower strain rates to nanotwins in the ultrafine/coarse grained austenite phase for higher strain rates. Meanwhile,...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied mechanics letters 2012, Vol.2 (2), p.1-9, Article 021001
Main Authors: Zhu, Linli, Chen, Aiying, Lu, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Chinagrains to a^1-martensite nanograins with bimodal grain size distribution for lower strain rates to nanotwins in the ultrafine/coarse grained austenite phase for higher strain rates. Meanwhile, we will further address the mechanism-based plastic models to describe the yield strength, strain hardening and ductility in nanostructured metals with bimodal grain size distribution and nanotwinned polycrystalline metals. The proposed theoretical models can comprehensively describe the plastic deformation in these two kinds of nanostructured metals and excellent agreement is achieved between the numerical and experimental results. These models can be utilized to optimize the strength and ductility in nanostructured metals by controlling the size and distribution of nanostructures.
ISSN:2095-0349
DOI:10.1063/2.12021012