Loading…

High performance planar microcavity organic semiconductor lasers based on thermally evaporated top distributed Bragg reflector

High performance organic semiconductor lasers (OSLs), especially those under current injection, have been sought for decades due to their potentially great applications in fields such as spectroscopy, displays, medical devices, and optical interconnection. The design and fabrication of high-quality...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2020-10, Vol.117 (15)
Main Authors: Hu, Yongsheng, Bencheikh, Fatima, Chénais, Sébastien, Forget, Sébastien, Liu, Xingyuan, Adachi, Chihaya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High performance organic semiconductor lasers (OSLs), especially those under current injection, have been sought for decades due to their potentially great applications in fields such as spectroscopy, displays, medical devices, and optical interconnection. The design and fabrication of high-quality resonators is a prerequisite for high performance OSLs. In the case of planar microcavities, the fabrication process of top distributed Bragg reflectors (DBRs) usually requires electron beam evaporation or manual lamination on top of organic thin-film layers, which can lead to issues including degradation of the organic materials, large-scale non-uniformity, and difficulties for current injection. Here, we report a non-destructive way of fabricating a top DBR by thermal evaporation. The top DBR based on thermally evaporated alternative TeOx/LiF stacks shows low morphological roughness, high process tolerance, and high reflectivity. Moreover, the deposition process causes negligible damage to the organic thin-film layers underneath. With the combination of a conventional e-beam evaporated bottom DBR, a high performance planar microcavity OSL with a low threshold of 1.7 μJ cm−2, an emission linewidth of 0.24 nm, and an angular divergence of
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0016052