Loading…

Analytical description of mixed ohmic and space-charge-limited conduction in single-carrier devices

While space-charge-limited current measurements are often used to characterize charge-transport in relatively intrinsic, low-mobility semiconductors, it is currently difficult to characterize lightly or heavily doped semiconductors with this method. By combining the theories describing ohmic and spa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2020-10, Vol.128 (16)
Main Authors: Röhr, Jason A., MacKenzie, Roderick C. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While space-charge-limited current measurements are often used to characterize charge-transport in relatively intrinsic, low-mobility semiconductors, it is currently difficult to characterize lightly or heavily doped semiconductors with this method. By combining the theories describing ohmic and space-charge-limited conduction, we derive a general analytical approach to extract the charge-carrier density, the conduction-band edge, and the drift components of the current density–voltage curves of a single-carrier device when the semiconductor is undoped, lightly doped, or heavily doped. The presented model covers the entire voltage range, i.e., both the low-voltage regime and the Mott–Gurney regime. We demonstrate that there is an upper limit to how doped a device must be before the current density–voltage curves are significantly affected, and we show that the background charge-carrier density must be considered to accurately model the drift component in the low-voltage regime, regardless of whether the device is doped or not. We expect that the final analytical expressions presented herein to be directly useful to experimentalists studying charge-transport in novel materials and devices.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0024737