Loading…
Multi-center bonds as resonance hybrids: A real space perspective
The concept of distinct bonds within molecules has proven to be successful in rationalizing chemical reactivity. However, bonds are not a well-defined physical concept, but rather vague entities, described by different and often contradicting models. With probability density analysis, which can—in p...
Saved in:
Published in: | The Journal of chemical physics 2022-06, Vol.156 (22), p.224107-224107 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The concept of distinct bonds within molecules has proven to be successful in rationalizing chemical reactivity. However, bonds are not a well-defined physical concept, but rather vague entities, described by different and often contradicting models. With probability density analysis, which can—in principle—be applied to any wave function, bonds are recovered as spin-coupled positions within most likely electron arrangements in coordinate space. While the wave functions of many systems are dominated by a single electron arrangement that is built from two-center two-electron bonds, some systems require several different arrangements to be well described. In this work, a range of these multi-center bonded molecules are classified and investigated with probability density analysis. The results are compared with valence bond theory calculations and data from collision-induced dissociation experiments. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0090607 |