Loading…
Mechanisms of graphite ablation by sub-millisecond ytterbium fiber laser pulses
Graphite is a key material in a variety of cross-cutting applications in energy conversion, energy storage, and nuclear energy. Recently, temporally modulated continuous wave lasers have been shown to produce well-defined ablation features in graphite at relatively high processing speeds. In this wo...
Saved in:
Published in: | Applied physics letters 2022-08, Vol.121 (9) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphite is a key material in a variety of cross-cutting applications in energy conversion, energy storage, and nuclear energy. Recently, temporally modulated continuous wave lasers have been shown to produce well-defined ablation features in graphite at relatively high processing speeds. In this work, we analyze in detail the laser ablation dynamics of single-pulse ablation in the sub-millisecond time regime to elucidate the origins of the resulting well-defined ablation craters using a combination of time-resolved emission imaging, diffuse reflection/scattering imaging, and optical emission spectroscopy. These multimodal in situ diagnostics revealed three main contributors to achieve well-defined ablation features: (1) rapid ejection of particles with ∼100 m/s speed, (2) ablation of the graphite in the gaseous form, and (3) absence of bulk liquid motion, which is typically observed in laser processing of metals. Plasma plume formation was sustained throughout the duration of the laser pulse (500
μs). This work provides insights into the complex physical and chemical mechanisms of sub-millisecond laser–matter interactions, which are critical for parameter space optimization and tailoring of laser machining and drilling processes. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0109618 |