Loading…

Aerodynamic mechanism of a combined buffer hood for mitigating micro-pressure waves at the 400 km/h high-speed railway tunnel portal

As high-speed trains exceed 400 km/h, tunnel aerodynamics pose significant challenges. The hat oblique tunnel buffer hood with enlarged cross section and ventilation windows (HEW) is a promising solution to mitigate micro-pressure waves (MPWs). However, there is limited research on HEW ventilation w...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2023-12, Vol.35 (12)
Main Authors: Li, Guo-Zhi, Ye, Xin, Deng, E, Yang, Wei-Chao, Ni, Yi-Qing, He, Hong, Ao, Wai-Kei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As high-speed trains exceed 400 km/h, tunnel aerodynamics pose significant challenges. The hat oblique tunnel buffer hood with enlarged cross section and ventilation windows (HEW) is a promising solution to mitigate micro-pressure waves (MPWs). However, there is limited research on HEW ventilation window configurations. Thus, field measurements and numerical simulations were conducted using the slip grid technique and an improved delayed eddy simulation turbulence model, with validation against field data. The study investigated the effects of aperture rate and ventilation window arrangement, analyzing the initial compression wave, pressure gradient, MPW, and flow field in the tunnel buffer hood under various ventilation window setups. Findings emphasize that increasing the aperture rate or placing ventilation windows near the tunnel entrance reduces MPWs when a high-speed train enters the buffer hood. However, it intensifies MPWs when the train transitions from the buffer hood to the tunnel. Optimal MPW mitigation is achieved with approximately 15% aperture rate and a ventilation window distance from the slope end of 0.3–0.4 times the enlarged cross section length. Double ventilation windows outperform single or three windows in MPW reduction, with longitudinally arranged windows at the top facilitating more efficient high-pressure air escape compared to circumferential windows.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0177766