Loading…
A simple one-electron expression for electron rotational factors
Within the context of fewest-switch surface hopping (FSSH) dynamics, one often wishes to remove the angular component of the derivative coupling between states J and K. In a previous set of papers, Shu et al. [J. Phys. Chem. Lett. 11, 1135–1140 (2020)] posited one approach for such a removal based o...
Saved in:
Published in: | The Journal of chemical physics 2024-03, Vol.160 (12) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Within the context of fewest-switch surface hopping (FSSH) dynamics, one often wishes to remove the angular component of the derivative coupling between states J and K. In a previous set of papers, Shu et al. [J. Phys. Chem. Lett. 11, 1135–1140 (2020)] posited one approach for such a removal based on direct projection, while we isolated a second approach by constructing and differentiating a rotationally invariant basis. Unfortunately, neither approach was able to demonstrate a one-electron operator Ô whose matrix element JÔK was the angular component of the derivative coupling. Here, we show that a one-electron operator can, in fact, be constructed efficiently in a semi-local fashion. The present results yield physical insight into designing new surface hopping algorithms and are of immediate use for FSSH calculations. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0192083 |