Loading…
Wavy interface formation mechanism during magnesium–aluminum electromagnetic pulse welding
The wavy interface and its formation mechanism in magnesium–aluminum joints fabricated by electromagnetic pulse welding are investigated. This work reveals the wavy interfaces are produced by the shock wave-induced Kelvin–Helmholtz (K–H) instability. The shock wave generated at the collision point p...
Saved in:
Published in: | Applied physics letters 2024-11, Vol.125 (22) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The wavy interface and its formation mechanism in magnesium–aluminum joints fabricated by electromagnetic pulse welding are investigated. This work reveals the wavy interfaces are produced by the shock wave-induced Kelvin–Helmholtz (K–H) instability. The shock wave generated at the collision point propagates forward along the collision angle and undergoes refraction and reflection at the boundaries, reaching the bonding interface and causing disturbances. It leads to K–H instability at the bonding interface, periodically generating waves. The re-reflection of the shock wave also leads to the secondary K–H instability, which creates the secondary wave with a smaller amplitude on the original wave. Based on this principle, a shock wave-induced K–H instability simulation model was also established to predict the wavy interface length. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0229108 |