Loading…
Sufficient conditions for the stability of linear periodic impulsive differential equations
Abstract linear periodic impulsive differential equations are considered. The impulse effect instants are assumed to satisfy the average dwell-time condition (the ADT condition). The stability problem is reduced to studying the stability of an auxiliary abstract impulsive differential equation. This...
Saved in:
Published in: | Sbornik. Mathematics 2019-11, Vol.210 (11), p.1511-1530 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract linear periodic impulsive differential equations are considered. The impulse effect instants are assumed to satisfy the average dwell-time condition (the ADT condition). The stability problem is reduced to studying the stability of an auxiliary abstract impulsive differential equation. This is a perturbed periodic impulsive differential equation, which considerably simplifies the construction of a Lyapunov function. Sufficient conditions for the asymptotic stability of abstract linear periodic impulsive differential equations are obtained. It is shown that the ADT conditions lead to less conservative dwell-time estimates guaranteeing asymptotic stability. Bibliography: 24 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.1070/SM9154 |