Loading…
Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping
Previous research has shown that long-term intensive cropping of irrigated lowland rice has led to significant grain-yield declines in field trials. The yield decline was attributed to decreased availability of soil nitrogen, which is held mostly in the soil organic matter. By advanced solid-state N...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2004-04, Vol.101 (17), p.6351-6354 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previous research has shown that long-term intensive cropping of irrigated lowland rice has led to significant grain-yield declines in field trials. The yield decline was attributed to decreased availability of soil nitrogen, which is held mostly in the soil organic matter. By advanced solid-state NMR spectroscopy, we have detected significant amounts of amide nitrogen directly bonded to aromatic rings in a humic acid fraction extracted from a continually submerged, triple-cropped rice soil. Because nitrogen bonded to aromatics is not readily plant-available, this observation can explain the yield decline. Quantitative 13 C NMR combined with advanced spectral editing showed that this humic acid is rich in lignin derivatives (>45% of all carbon), whereas the corresponding humic acid fraction extracted from an aerobic, single-cropped rice soil contains less lignin and less nitrogen bonded to aromatics. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0401349101 |