Loading…
The Brain-Derived Neurotrophic Factor Enhances Synthesis of Arc in Synaptoneurosomes
Protein synthesis in neurons is essential for the consolidation of memory and for the stabilization of activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP). Activity-dependent translation of dendritically localized mRNAs has been proposed to be a critical source of ne...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2002-02, Vol.99 (4), p.2368-2373 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protein synthesis in neurons is essential for the consolidation of memory and for the stabilization of activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP). Activity-dependent translation of dendritically localized mRNAs has been proposed to be a critical source of new proteins necessary for synaptic change. mRNA for the activity-regulated cytoskeletal protein, Arc, is transcribed during LTP and learning, and disruption of its translation gives rise to deficits in both. We have found that selective translation of Arc in a synaptoneurosomal preparation is induced by the brain-derived neurotrophic factor, a neurotrophin that is released during high-frequency stimulation patterns used to elicit LTP. This effect involves signaling through the TrkB receptor and is blocked by the N-methyl-D-aspartate-type glutamate receptor antagonist, MK801. The results suggest there is a synergy between neurotrophic and ionotropic mechanisms that may influence the specificity and duration of changes in synaptic efficacy at glutamatergic synapses. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.042693699 |