Loading…
Positive feedback loop between Sox2 and Sox6 inhibits neuronal differentiation in the developing central nervous system
How a pool of undifferentiated neural progenitor cells is maintained in the developing nervous system is an issue that remains unresolved. One of the key transcription factors for self-renewal of these cells is Sox2, the forced expression of which has been shown to inhibit neuronal differentiation i...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (7), p.2794-2799 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | How a pool of undifferentiated neural progenitor cells is maintained in the developing nervous system is an issue that remains unresolved. One of the key transcription factors for self-renewal of these cells is Sox2, the forced expression of which has been shown to inhibit neuronal differentiation in vivo. To dissect the molecular mechanisms of Sox2 activity, a ChIP-on-chip assay has been carried out for Sox2, and multiple candidate direct target genes have been isolated. In this report, we provide evidence indicating that Sox6 , which like Sox2 belongs to the SRY-related HMG box transcription factor family, is a bona-fide direct regulatory target of Sox2. In vivo, Sox6 expression is seen with a temporal lag in Sox2-positive neural precursor cells in the ventricular zone, and Sox2 promotes expression of Sox6 as a transcriptional activator. Interestingly, gain- and loss-of-function assays indicate that Sox6 in turn is required for the maintenance of Sox2 expression, suggesting that a positive feedback loop, which functions to inhibit premature neuronal differentiation, exists between the two transcription factors. |
---|---|
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.1308758111 |