Loading…
Role of N-Linked Glycosylation in Human Osteonectin
In this study we demonstrate that the binding region of recombinant truncated human bone osteonectin (tHON) for type V collagen resides between amino acids 1 and 146. After removal of oligosaccharide chain structures from tHON, bovine bone osteonectin (BBON) and human platelet osteonectin (HPON) by...
Saved in:
Published in: | The Journal of biological chemistry 1995-09, Vol.270 (39), p.23212-23217 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study we demonstrate that the binding region of recombinant truncated human bone osteonectin (tHON) for type V collagen
resides between amino acids 1 and 146. After removal of oligosaccharide chain structures from tHON, bovine bone osteonectin
(BBON) and human platelet osteonectin (HPON) by N -glycanase, their ability to bind to type V collagen is increased, and HPON affinity to collagen V is the same as that of
BBON. These data suggest that glycosylation of osteonectin has a direct or regulatory effect on osteonectin binding to collagen
V and that the increase in tHON binding upon removal of carbohydrate is the result of a loss of a down-regulation site or
direct interference of the carbohydrate at the binding site. To determine the specific role of each N -glycosylation site in tHON, Asn and Asn were mutated to Gln (N71Q, N99Q) and Thr and Thr mutated to Ala (T73A, T101A) to selectively inhibit oligosaccharide attachment. The binding affinity of N99Q and T101Q to
collagen V is markedly increased over wild-type tHON, whereas N71Q and T73A are the same as wild-type tHON. The doubled mutant
(N71,99Q) binds identically to collagen V as N99Q and T101A. These data suggest that only the position 99 glycosylation site
(Asn - X -Thr ) in tHON is important in the reduction of binding of osteonectin to collagen V. Consistent with the binding data is the observation
that both the N71Q and T73A mutant proteins migrate on SDS-polyacrylamide gel electrophoresis gels identically to wild-type
tHON, suggesting that there is little or no N -glycosylation of residue 71 in wild-type osteonectin. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.270.39.23212 |