Loading…

A Water-soluble Homodimeric Serine Palmitoyltransferase fromSphingomonas paucimobilis EY2395T Strain

Serine palmitoyltransferase (SPT, EC 2.3.1.50) is a key enzyme in sphingolipid biosynthesis and catalyzes the decarboxylative condensation of l-serine and palmitoyl-coenzyme A to 3-ketodihydrosphingosine. We found that the Gram-negative obligatory aerobic bacteria Sphingomonas paucimobilis EY2395T h...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2001-05, Vol.276 (21), p.18249-18256
Main Authors: Ikushiro, Hiroko, Hayashi, Hideyuki, Kagamiyama, Hiroyuki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Serine palmitoyltransferase (SPT, EC 2.3.1.50) is a key enzyme in sphingolipid biosynthesis and catalyzes the decarboxylative condensation of l-serine and palmitoyl-coenzyme A to 3-ketodihydrosphingosine. We found that the Gram-negative obligatory aerobic bacteria Sphingomonas paucimobilis EY2395T have significant SPT activity and purified SPT to homogeneity. This enzyme is a water-soluble homodimeric protein unlike eukaryotic enzymes, known as heterodimers composed of tightly membrane-bound subunits, named LCB1 and LCB2. The purified SPT shows an absorption spectrum characteristic of a pyridoxal 5′-phosphate-dependent enzyme. The substrate specificity of theSphingomonas SPT is less strict than the SPT complex from Chinese hamster ovary cells. We isolated the SPT gene encoding 420 amino acid residues (Mr 45,041) and succeeded in overproducing the SPT protein in Escherichia coli, in which the product amounted to about 10−20% of the total protein of the cell extract. Sphingomonas SPT shows about 30% homology with the enzymes of the α-oxamine synthase family, and amino acid residues supposed to be involved in catalysis are conserved. The recombinant SPT was catalytically and spectrophotometrically indistinguishable from the native enzyme. This is the first successful overproduction of an active enzyme in the sphingolipid biosynthetic pathway. Sphingomonas SPT is a prototype of the eukaryotic enzyme and would be a useful model to elucidate the reaction mechanism of SPT.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M101550200