Loading…

Oxygen-mediated Regulation of Tumor Cell Invasiveness

Tumor hypoxia is associated with a poor prognosis for patients with various cancers, often resulting in an increase in metastasis. Moreover, exposure to hypoxia increases the ability of breast carcinoma cells to invade the extracellular matrix, an important aspect of metastasis. Here, we demonstrate...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2002-09, Vol.277 (38), p.35730-35737
Main Authors: Postovit, Lynne-Marie, Adams, Michael A., Lash, Gendie E., Heaton, Jeremy P., Graham, Charles H.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tumor hypoxia is associated with a poor prognosis for patients with various cancers, often resulting in an increase in metastasis. Moreover, exposure to hypoxia increases the ability of breast carcinoma cells to invade the extracellular matrix, an important aspect of metastasis. Here, we demonstrate that the hypoxic up-regulation of invasiveness is linked to reduced nitric oxide signaling. Incubation of human breast carcinoma cells in 0.5% versus 20% oxygen increased their in vitro invasiveness and their expression of the urokinase receptor, an invasion-associated molecule. These effects of hypoxia were inhibited by nitric oxide-mimetic drugs; and in a manner similar to hypoxia, pharmacological inhibition of nitric oxide synthesis increased urokinase receptor expression. The nitric oxide signaling pathway involves activation of soluble guanylyl cyclase (sGC) and the subsequent activation of protein kinase G (PKG). Culture of tumor cells under hypoxic conditions (0.5% versus 20% oxygen) resulted in lower cGMP levels, an effect that could be prevented by incubation with glyceryl trinitrate. Inhibition of sGC activity with a selective blocker or with the heme biosynthesis inhibitor desferrioxamine increased urokinase receptor expression. These compounds also prevented the glyceryl trinitrate-mediated suppression of urokinase receptor expression in cells incubated under hypoxic conditions. In contrast, direct activation of PKG using 8-bromo-cGMP prevented the hypoxia- and desferrioxamine-induced increases in urokinase receptor expression as well as the hypoxia-mediated enhanced invasiveness. Further involvement of PKG in the regulation of invasion-associated phenotypes was established using a selective PKG inhibitor, which alone increased urokinase receptor expression. These findings reveal that an important mechanism by which hypoxia increases tumor cell invasiveness (and possibly metastasis) requires inhibition of the nitric oxide signaling pathway involving sGC and PKG activation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M204529200