Loading…
Nehari manifold for a Schrödinger equation with magnetic potential involving sign-changing weight function
We consider the following class of elliptic problems \[ - \Delta_A u + u = a_{\lambda}(x) |u|^{q-2}u+b_{\mu}(x) |u|^{p-2}u ,\quad x\in {\mathbb{R}}^N, \] − Δ A u + u = a λ ( x ) | u | q − 2 u + b μ ( x ) | u | p − 2 u , x ∈ R N , where $ 1 0 are real parameters, $ u \in H^1_A({\mathbb {R}}^N) $ u ∈...
Saved in:
Published in: | Applicable analysis 2024-04, Vol.103 (6), p.1036-1063 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the following class of elliptic problems
\[ - \Delta_A u + u = a_{\lambda}(x) |u|^{q-2}u+b_{\mu}(x) |u|^{p-2}u ,\quad x\in {\mathbb{R}}^N, \]
−
Δ
A
u
+
u
=
a
λ
(
x
)
|
u
|
q
−
2
u
+
b
μ
(
x
)
|
u
|
p
−
2
u
,
x
∈
R
N
,
where
$ 1
0
are real parameters,
$ u \in H^1_A({\mathbb {R}}^N) $
u
∈
H
A
1
(
R
N
)
and
$ A:{\mathbb {R}}^N \rightarrow {\mathbb {R}}^N $
A
:
R
N
→
R
N
is a magnetic potential. Exploring the relationship between the Nehari manifold and fibering maps, we will discuss the existence, multiplicity and regularity of solutions. |
---|---|
ISSN: | 0003-6811 1563-504X |
DOI: | 10.1080/00036811.2023.2230257 |